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Abstract

In this paper we introduce the general setting of a multivariate time series autore-

gressive model with stochastic time-varying coefficients and time-varying conditional

variance of the error process. We establish consistency, convergence rates and asymp-

totic normality for kernel estimators of the paths of coefficient processes. The method

is applied to a popular 7 variable data set to analyze evidence of time-variation in

empirical objects of interest for the DSGE literature.

1 Introduction

This paper considers a general multivariate VAR model generated by stochastic coeffi-

cients that evolve as bounded persistent processes, such as, e.g., bounded random walks.

In addition, it allows for potentially time-varying volatilities of disturbances. We estab-

lish consistency and rates of kernel estimates of the paths of coefficient processes and the

volatility process of the disturbances, and supplement theoretical results with Monte Carlo

evidence. Finally, we use our estimation methods to characterise the dynamic evolution

of the dataset used originally by Smets and Wouters (2007). We investigate changes in a

variety of features of the multivariate model. These include the impact on hours worked of

a technology shock, the impact on output of a monetary poilcy shock, and the predictability

of inflation. These three objects are at the centre of a number of debates in recent work in

empirical macroeconomics.

Our work extends in various important directions the contribution of Giraitis, Kapetan-

ios, and Yates (2011). The broad purpose of the focus of Giraitis, Kapetanios, and Yates

∗Giraitis’ research is supported by the ESRC grant RES062230790. We are grateful for comments from

Fabio Canova which acted as the spur for us to explain the practical benefits of the kernel estimator more

fully. We thank Kostas Theodoridis for making available his update to the Smets-Wouters dataset.
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(2011) and the current paper on kernel estimation methods for stochastically-varying co-

efficient autoregressive models stems from the exclusive focus of the relevant literature on

a Bayesian approach to the same econometric problem. Papers by Cogley and Sargent

(2005) and others have popularised estimators that use the Kalman filter embedded within

Gibbs sampling algorithms. Stochastic time varying coefficient models have been deployed

in the study of many topics in empirical macroeconomics including: changes in inflation

persistence over time, changes in the persistence of the real exchange rate, estimating the

contribution of good luck versus good policy to the reduction in macroeconomic volatility

during the great moderation, and changes in the response of hours worked to technology

shocks.

Our kernel estimation approach has a number of attractions as an alternative tool.

First, comparable theoretical results on consistency and rates are not available for Bayesian

type estimates under the assumption that parameter processes follow a bounded random

walk. Although most applications of the MCMC algorithms are superficially Bayesian,

many of them stress the use of uninformative priors where possible. So, the theoretical

results of this paper are not of mere academic interest. Second, our kernel estimator avoids

the ‘pile up’ problem that MCMC methods are known to be prone to, which leads to an

overstatement of the probability that parameters do not change, as documented by Stock

and Watson (1998). Third, the kernel estimates are very fast to compute, taking seconds

to produce the estimates for a VAR of large dimension, rather than days for the Bayesian

competitor, with the computational gains increasing as the dimension of the VAR increases.

At some point, with VARs of dimension 5 or 6, the alternative algorithm becomes entirely

intractable. The difficulty of Bayesian methods stems from the need to admit only those

paths of VAR coefficient processes which imply point-wise instantaneous stationarity, i.e.

satisfy restriction of a bounded random walk. As the dimension of the VAR model increases,

the law of large numbers makes it even harder to find draws of parameter processes that

satisfy this bounding constraint. Typically, the sampling algorithm draws parameter path

in one go, then accepting or rejecting as appropriate. The problem is aggravated by the

fact that there is considerable persistence in many macro time series, so with the increase of

VAR dimension it becomes more and more likely to find at least one time period for which

restriction condition fails. Koop and Potter (2011) modify the method so that parameters

for each period are drawn separately and, therefore, rejection does not mean discarding the

satisfactory draws in the parameter process accumulated up to that point.

Our kernel estimation method does not suffer from this problem. It produces a single

path of point estimates directly. This provides the option of assessing ex post whether the

point estimate of the coefficient process satisfies the bounding condition for the whole path.

If it does, then the estimation is completed. If not, (in fact regardless of whether it does or

not), our estimates can be used as the input into some subsequent Bayesian kind procedure

in which the prior that, the bounding condition should hold, is imposed.

A sceptical reader might accept that our kernel estimates can handle large dimension

time varying VARs, but nevertheless wonder whether we really need them? Do we forgo
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anything of import by confining ourselves to studying smaller dimension systems? Our

application is an attempt to convince for the need of large dimension VARs. The 7 variable

US data set we consider was originally used by Smets and Wouters (2007) to estimate a

medium scale DSGE model with various frictions in price and wage-setting, consumption

and investment. That model is widely cited and has given rise to similar models used in

many central banks. It was predicated on the idea that the dynamics, the models’ structural

features were wired to capture, were not themselves subject to significant time variation

within the sample itself. As such it is a useful laboratory to look for time-variation. For

comparison, to assess the benefit got by focusing on the larger dimension VAR, we estimate

a smaller, 4 variable system. We identify monetary policy and technology shocks using sign

restrictions, and look for time-variation in the impulse responses to these shocks. We also

compute multivariate measures of inflation predictability and assess how this has changed

over the sample period.

The application turns up results that are interesting in their own right. We uncover

pronounced shifts in the impulse response of real variables like output and hours to an

identified monetary policy shock that imply changes in the extent of nominal rigidity in the

economy. We compute that the impulse response of real wages to a monetary policy shock

has shifted too: it begins our sample period mild and negative, but in later periods we see a

strong positive response. These results can loosely be interpreted as suggesting that wages

became more sticky relative to prices. For example, following a contractionary monetary

policy shock that leads to a recession, the more sticky wages are relative to prices, the more

likely real wages are to increase. We find that the impulse response of hours worked to a

technology shock was initially mild and negative, but becomes steadily larger and positive

through to the present day, implying that the economy (in this regard at least) more closely

resembles a frictionless real business cycle model at the end of the sample than at the

beginning. Inflation predictability shows some pronounced rises and falls in our sample

period, but there is no clear tendency for it to be less predictable in the 80’s as seems to be

the consensus in the literature.

Along some dimensions, our smaller, 4-variable system does a good job of characterising

these dynamics, but along others it does not. For example, shifts in the impulse response

of output and hours worked to a monetary policy shock look very similar whether through

the lens of the 7 or 4 variable system. However, the 4 variable system gives a very different

read on the response of hours worked to a technology shock: here there is no tendency for

this impulse response to become more positive over time, so in that respect the smaller

system fails to adequately describe the time-variation evident in the larger system. Also,

we find that the 4 variable system overstates the fall in inflation predictability in the 1990s,

obscuring the essential continuity in inflation dynamics that the larger, 7-variable VAR

system finds.

It is important to stress the contributions of this paper relative to Giraitis, Kapetanios,

and Yates (2011). As we discuss in detail in the next section, we extend the theoretical

analysis in two important directions that are crucial in allowing time-varying estimation
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in realistic macroeconometric models that are multivariate and allow stochastic volatility.

Our theoretical results extend well beyond the results of Giraitis, Kapetanios, and Yates

(2011) by allowing more general coefficient processes and providing more refined convergence

rate results than the earlier work, on top of the extension to multivariate heteroscedastic

models. We evaluate the performance of our extended estimator via Monte Carlo analysis

and, crucially, illustrate in detail the extended scope of our modelling toolkit by analysing

a well known dataset using a realistic macroeconometric model.

The rest of the paper is structured as follows. Section 2 presents our setup and theoreti-

cal results. Sections 3 and 4 present our Monte Carlo and empirical evidence, while Section

5 concludes. Proofs are presented in the Appendix.

2 Theoretical considerations

This paper considers two major extensions compared to the work of Giraitis, Kapetanios,

and Yates (2011). The first extension concerns the setup and estimation of a multivariate

autoregressive model with time varying stochastic coefficients while the second centers on

estimation of paths of the process of the time varying conditional variance of disturbances.

We start by considering two versions of a multivariate dynamic autoregressive model given

by

yt = Ψt−1yt−1 + ut, t = 1, 2, · · · , n, (2.1)

and

yt = αt + Ψt−1yt−1 + ut, (2.2)

where yt = (y1t, ..., ymt)
′, the noise ut = (u1t, ..., umt)

′ and αt = (α1t, ..., αmt)
′ are

m−dimensional vectors, and Ψt = [ψt,ij ] is m × m matrix of (random) coefficient pro-

cesses while Eutu
′
s = 0, t 6= s. To ensure that this dynamic model generates a bounded

process yt and to enable estimation of the model, it is important to bound the spectral

norm or the maximum absolute eigenvalue of Ψt above by one: ||Ψt||sp < 1. There are a

variety of ways to implement such a bounding, see for examples section 2.4. We assume

that Ψt has the following properties.

Assumption 2.1. The random coefficients Ψt are such that ||Ψt||sp ≤ r < 1, t ≥ 0 for

some r < 1. Moreover, as h→∞, h = o(t), t→∞,

sup
s:|s−t|≤h

||Ψt −Ψs||2sp = Op
(
h/t
)
. (2.3)

The second extension of the paper allows for a martingale difference noise given by

ut = Ht−1εt, E[ut|Ft−1] = 0 (2.4)

with respect to some filtration Ft, where Ht = {ht,ij} is a m × m time varying random

volatility process, and εt is a vector-valued standardized i.i.d. noise, Eεt = 0, Eεtε
′
t = I.

Denote by Σt = Ht−1H
′
t−1 = E[utu

′
t|Ft−1] the conditional variance-covariance matrix.

We assume the following.
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Assumption 2.2. (i) {Ht}, {Ψt}, {αt} and {εt} are Ft-measurable; Eε4
i1 < ∞ and

Ey4
i0 <∞ for i = 1, · · · ,m.

(ii) For t ≥ 0, Eh4
t,ij ≤ C; for 1 ≤ k ≤ t/2, E||Ht −Ht+k||2sp ≤ Ck/t.

(iii) ||H−1
t ||sp = Op(1) as t→∞.

Assumption 2.2 implies that maxj Eu
4
j <∞. For examples of Ht, see section 2.4.

The next theorem states structural results. In particular, we show that yt can be

written as a moving average of the noise uj with time varying (random) weights Πt,0 := 1,

Πt,j := Ψt−1 · · ·Ψt−j , 1 ≤ j ≤ t, and approximated by a truncated VAR(1) process zt, see

(2.8). Notice that

||Πt,j ||sp ≤ ||Ψt−1||sp · · · ||Ψt−j ||sp ≤ rj , 1 ≤ j ≤ t. (2.5)

Theorem 2.1. Under Assumption 2.1, the process yt of (2.1) can be written as

yt =
∑t−1

j=0 Πt,jut−j + Πt,ty0, t ≥ 1, (2.6)

E||yt||4 ≤ C, t ≥ 0, (2.7)

yt = zt + op(1), zt :=
∑t−1

k=0 Ψk
tut−k, t→∞. (2.8)

2.1 Estimation of V AR(1) model with no intercept

To estimate the paths Ψ1, · · · ,Ψn and α1, · · · ,αn of the coefficient processes in (2.1), we

use the kernel estimate

Ψ̂t :=
( n∑
j=1

ktjyjy
′
j−1

)( n∑
j=1

ktjyj−1y
′
j−1

)−1
,

with the weights ktj := K
(
(t − j)/Hψ

)
where K(x) ≥ 0, x ∈ R is a continuous bounded

function and Hψ is a bandwidth parameter such that Hψ → ∞, Hψ = o(n/ log n). Such

estimates are a simple generalisation of a rolling window estimator

Ψ̂t :=
( t+Hψ∑
j=t−Hψ

yjy
′
j−1

)( t+Hψ∑
j=t−Hψ

yj−1y
′
j−1

)−1
,

which is a local sample correlation of yt’s at lag 1. We assume that

K(x) ≤ C exp(−cx2), |K̇(x)| ≤ C(1 + x2)−1, x ≥ 0, ∃C > 0, c > 0, (2.9)

where K is a non-negative function with a bounded derivative K̇(x) such that
∫
K(x)dx = 1.

For example,

K(x) = (1/2)I(|x| ≤ 1), flat kernel,

K(x) = (3/4)(1− x2)I(|x| ≤ 1), Epanechnikov kernel,

K(x) = (1/
√

2π)e−x
2/2, Gaussian kernel.

5



To estimate Σt = HtH
′
t, we use the kernel estimate based on residuals ûj = yj − Ψ̂tyj−1,

Σûû,t = L−1
t

n∑
j=1

ltjûjû
′
j , where ltj := L(

t− j
Hh

), Lt :=

n∑
j=1

ltj , (2.10)

where Hh → ∞, Hh = o(n) is another bandwidth parameter, and the kernel function L

obeys the same restrictions as K.

Below we set H̄ψ = Hψ log1/2Hψ if K has unbounded support, and H̄ψ = Hψ if K has

bounded support. Similarly we define H̄h, while an << bn stands for an/bn → 0.

Denote Kt =
∑n

j=1 ktj , K2,t =
∑n

j=1 k
2
tj , L2,t =

∑n
j=1 l

2
tj and set

κn,ψ := (H̄ψ/n)1/2 +H
−1/2
ψ , κn,h := (H̄h/n)1/2 +H

−1/2
h . (2.11)

Then, the following holds.

Theorem 2.2. Let y1, · · ·yn be defined as in (2.1), and t = [nτ ], where 0 < τ < 1 is fixed.

Suppose that Assumptions 2.1 and 2.2 hold, and K satisfies (2.9).

(i) Then, for Hψ = o(n/ log n), Hh = o(n/ log n),

Ψ̂t −Ψt = Op(κn,ψ), (2.12)

Σûû,t −Σt = Op
(
κ2
n,ψ + κn,h

)
. (2.13)

In particular, κ2
n,ψ + κn,h ≤ 3κn,h if H

1/2
h ≤ Hψ ≤ (Hhn)1/2/ log n.

(ii) In addition, if HψH̄ψ = o(n), then for any real m× 1- vector a such that ||a|| = 1,

(Kt/K2,t)
1/2H−1

t−1(Ψ̂t −Ψt)
( n∑
j=1

ktjyj−1y
′
j−1

)1/2
a→D N (0, I) (2.14)

has m-variate standard normal limit distribution.

(iii) In addition, if HhH̄h = o(n) and H
1/2
h << Hψ << n/(Hh log n)1/2, then

(Lt/L
1/2
2,t )H−1

t−1(Σûû,t −Σt)H
′−1
t−1 →D Z (2.15)

where the elements of Z = (zij)i,j=1,··· ,m are independent normal variables such that zij ∼
N(0, v2

ij) where v2
ij = 1 if i 6= j and v2

ii = Var(εi1).

Remark 2.1. In normal approximation (2.14) for Ψ̂t of Theorem 2.2(ii), H−1
t−1 can be

replaced by Σ
−1/2
ûû,t in view of ||Σ−1/2

ûû,t − Σ
−1/2
t || = op(1) of Lemma 6.5 (i). In normal

approximation (2.15) for Σûû,t that can be done if Σ
−1/2
t = H−1

t−1 which holds if H−1
t−1 is

positive definite.

In addition, in (2.14),

K−1
t

∑n
j=1 ktjyj−1y

′
j−1 = Vψ,t + op(1), Vψ,t :=

∑∞
k=0 Ψk

tΣtΨ
′
t
k
. (2.16)
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The following proposition shows that the weighted average ȳt of a multivarite VAR(1)

process with no intercept and a stochastic VAR(1) parameter has property ȳt = Op(κn,ψ) =

op(1). In addition, it satisfies normal approximation and a multivariate version of the

Beveridge-Nelson decomposition which is well-known for univariate stationary linear pro-

cesses.

Proposition 2.1. Under assumptions of Theorem 2.2(i), with κ∗n,ψ := (H̄ψ/n)1/2 +H−1
ψ ,

ȳt = (1−Ψt)
−1ūt +Op(κ

∗
n,ψ) = (1−Ψt)

−1Ht−1ε̄t +Op(κ
∗
n,ψ) = Op(κn,ψ).

In addition, if HψH̄ψ = o(n), then (Kt/K
1/2
2,t )H−1

t−1(1−Ψt)ȳt →D N (0, I).

Proposition 2.1 is derived in Lemma 6.4(i).

2.2 Estimation of V AR(1) model with a random attractor

Next, we discuss the VAR(1) model yt that includes a persistent (random) term µt, that

in a fixed coefficient VAR model plays the role of the mean.

We decompose yt = µt + (yt − µt) into a persistent attractor µt, and the term

yt − µt = Ψt−1(yt−1 − µt−1) + ut, t ≥ 1 (2.17)

which follows the VAR(1) process (2.1) with no intercept, below denoted by ẏt := yt − µt.
By (2.8), yt satisfies the following moving average approximation:

yt = µt +
∑t−1

k=0 Ψk
tut−k + op(1), t→∞.

This model can also be written as a VAR(1) process yt = αt + Ψt−1yt−1 + ut with the

intercept αt = µt −Ψt−1µt−1. Although the attractor µt can be estimated, in general, it

cannot be interpreted as the mean Eyt.

We estimate µt, Ψt and αt by µ̂t ≡ ȳt = K−1
t

∑n
j=1 ktjyj ,

Ψ̂t :=
( n∑
j=1

ktjŷt,jŷ
′
t,j−1

)( n∑
j=1

ktjŷt,j−1ŷ
′
t,j−1

)−1
, α̂t = ȳt − Ψ̂tȳt,

where ŷt,j := yj− ȳt. To estimate Σt, we use the estimate Σûû,t of (2.10) based on residuals

ûj = ŷt,j − Ψ̂tŷt,j−1.

The following assumption describes a class of permissible attractors µt.

Assumption 2.3. µt = (µ1t, · · ·µmt)′ is Ft measurable, maxtEµ
4
it <∞, i = 1, · · · ,m and

satisfies either (i) or (ii).

(i) E||µt − µt+k||2 ≤ Ck/t, 1 ≤ k ≤ t/2.

(ii) µt − µt+k = m(t, k) + m̃(t, k), where E||m(t, k)||2 ≤ C(k/t), 1 ≤ k ≤ h ≤ t/2, and

max1≤k≤h ||m̃(t, k)|| = Op
(
(h/t)1/2 + h−1

)
, where ||.|| denotes the Euclidean norm.
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The next theorem establishes consistency, convergence rates and asymptotic normality for

the estimates.

Theorem 2.3. Let y1, · · · ,yn be a sample of a VAR(1) model (2.17) with an attractor,

µt, and t = [nτ ], where 0 < τ < 1 is fixed. Assume that K and L satisfy (2.9), and

Assumptions 2.1- 2.3 hold. Then, for Hψ = o(n/ log n), Hh = o(n/ log n),

µ̂t − µt = Op(κn,ψ), Ψ̂t −Ψt = Op(κn,ψ), α̂t −αt = Op(κn,ψ), (2.18)

Σûû,t −Σt = Op
(
κ2
n,ψ + κn,h

)
.

(ii) In addition, if HψH̄ψ = o(n), then

(Kt/K
1/2
2,t )H−1

t−1(1−Ψt)(µ̂t − µt)→D N (0, I), (2.19)

(Kt/K
1/2
2,t )H−1

t−1(α̂t −αt)
(

1 + µ̂′t
(
K−1
t

∑n
j=1 ktjŷj−1ŷ

′
j−1

)−1
µ̂t

)−1/2
→D N (0, I).

Moreover for any real m× 1- vector a such that ||a|| = 1,

(Kt/K2,t)
1/2H−1

t−1(Ψ̂t −Ψt)
( n∑
j=1

ktjŷj−1ŷ
′
j−1

)1/2
a→D N (0, I). (2.20)

(iii) In addition, if HhH̄h = o(n) and H
1/2
h << Hψ << n/(Hh log n)1/2, then

(Lt/L
1/2
2,t )H−1

t−1(Σûû,t −Σt)H
′−1
t−1 →D Z (2.21)

where Z is the same as in (2.15).

Remark 2.2. In normal approximations for µ̂t, α̂t and Ψ̂t of Theorem 2.3(ii) H−1
t−1 can

be replaced by Σ
−1/2
ûû,t because of ||Σ−1/2

ûû,t −Σ
−1/2
t || = op(1) of Lemma 6.5 (ii). For Σûû,t in

(2.21) that can be done if Σ
−1/2
t = H−1

t−1 which holds if H−1
t−1 is positive definite.

Moreover, in (2.19) and (2.20),

D̂t = 1 + µ̂′t
(
K−1
t

∑n
j=1 ktjŷj−1ŷ

′
j−1

)−1
µ̂t = Dt + op(1), Dt := 1 + µ′tV

−1
ψ,tµt,

K−1
t

∑n
j=1 ktjŷj−1ŷ

′
j−1 = Vψ,t + op(1), Vψ,t :=

∑∞
k=0 Ψk

tΣtΨ
′
t
k
. (2.22)

2.3 Estimation of V AR(1) model with an intercept

To conclude, we discuss estimation of an VAR(1) model (2.2) with intercept. As in (2.7),

yt can be written as a VAR(1) model

yt = Ψt−1yt−1 +αt + ut =

t−1∑
k=0

Πt,kαt−k + {
t−1∑
k=0

Πt,kut−k + Πt,ty0} =: µt + ẏt, (2.23)

that includes the attractor µt =
∑t−1

k=0 Πt,kαt−k and VAR(1) process ẏt with no inter-

cept: ẏt = Ψt−1ẏt−1 + ut, t ≥ 1, ẏ0 = y0. By (2.8), yt satisfies the moving average
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representation yt = µt +
∑t−1

k=0 Ψk
tut−k + op(1). Notice relationships between the attractor

µt =
∑t−1

k=0 Πt,kαt−k and the intercept αt = µt −Ψt−1µt−1.

The following assumption describes a class of permissible intercepts αt, for which the

corresponding attractor µt in (2.23) satisfies Assumption 2.3.

Assumption 2.4. αt = (α1t, · · · , αmt)′ is Ft measurable, maxtEα
4
it < ∞, and E||αt −

αt+k||2 ≤ C(k/t), t ≥ 1, 1 ≤ k < t/2.

Proposition 2.2. If αt satisfies Assumption 2.4 and Assumptions 2.1 and 2.2 hold, then

µt in (2.23) satisfies Assumption 2.3(ii).

Therefore, estimation of the VAR(1) model with intercept reduces to that of a model with an

attractor, discussed in the previous section. This completes the discussion of the theoretical

properties of our estimators.

2.4 Examples

In setting the model for VAR parameter Ψt = {ψij,t}, one can use the restriction that

mirrors the bounding of Giraitis, Kapetanios, and Yates (2011) for univariate processes:

ψij,t = rij
aij,t

max0≤s≤t
∑

j |aij,s|
, t ≥ 1, i, j = 1, · · · ,m,

for some rij > 0, ri1 + · · · + rim ≤ r < 1 and some persistent processes aij,t. It satisfies

requirement ||Ψt||sp ≤ r < 1 of Assumption 2.1. To assure validity of the second requirement

(2.3) of Assumption 2.1, one can assume that for any i, j = 1, · · · ,m,

n−1/2aij,[τn] ⇒D[0,1] Wij,τ + gij(τ), 0 ≤ τ ≤ 1, (2.24)

converges weakly in Skorokhod space D[0, 1], where (Wij,τ , 0 ≤ τ ≤ 1) is zero mean random

process with finite variance, Wij,1 has continuous probability distribution, and gij(τ) is

a deterministic continuous bounded function. Such coefficient aij,t may contain both a

stochastic and deterministic parts. The popular empirical chose of aij,t in macroeconomic

literature is a random walk

aij,t = v1 + · · ·+ vt, vt ∼ IID(0, σ2).

If v1 has 2 + δ finite moments, then (2.24) holds with a Brownian motion limit. The con-

dition (2.24) allows modeling of a extremely wide class of random/deterministic coefficient

processes ψij,t, see Giraitis, Kapetanios, and Yates (2011). In case m = 1, (2.24) implies

(2.3) of Assumption 2.1, see Lemma 5.1(iii) of Giraitis, Kapetanios, and Yates (2011). In

general, validity of (2.24) for each component ψij,t implies (2.3) for m ≥ 2.

A typical example of an intercept αt = {αi,t} satisfying Assumption 2.4 is

αi,t = t−1/2(vi1 + · · ·+ vit) + t−1(di1 + · · ·+ dit), t ≥ 1, i = 1, · · · ,m, (2.25)
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where vit’s are stationary zero mean r.v.’s such that
∑∞

k≥0 |Evikvi0| < ∞, Ev4
i1 < ∞, and

dit’s are non-random numbers, maxt |dit| <∞. It covers the case of a deterministic constant

intercept αi,t = α, a time varying intercept αi,t = g(t/n), and a purely random intercept

αi,t = t−1/2
∑t

j=1 vij . In the univariate case (2.25) was discussed in Example 2.2 of Giraitis,

Kapetanios, and Yates (2011).

A typical example of a time varying random volatility process Ht = {hij,t} satisfying

Assumption 2.2(ii) is

hij,t =
∣∣t−1/2(vij,1 + · · ·+vij,t)+ t−1(dij,1 + · · ·+dij,t)

∣∣+cij , t ≥ 1, i, j = 1, · · · ,m, (2.26)

where the stationary process {vij,t} and non-random dij,t’s have the same properties as {vit}
and di,t’s in (2.25), and cij ≥ 0 are non-random. Such Ht can be deterministic as well as

random. Assumption 2.2(iii), ||H−1
t ||sp = Op(1), e.g. is satisfied when Ht is diagonal and

cii > 0 in (2.26).

3 Monte Carlo study

In this Section, using Monte Carlo simulations, we evaluate performance of the estimators

of the time varying VAR coefficients and the time varying volatilities.

3.1 Results for coefficient of time varying VAR processes

The model for the m-dimensional vector process yt is a V AR(1) with no intercept:

yt = Ψt−1yt−1 + εt, t = 1, 2, · · · , n, (3.1)

where Ψt = P
(ort)
t ΛtP

(ort)
t

′
, the matrix P

(ort)
t is obtained from m×m matrix P t = {pt,ijt}

by the Gram-Schmidt orthogonalisation to the columns, and Λt = diag[λit] is a diagonal

matrix. We set

pij,t = aij,t/max0≤s≤t aij,s, aij,t = aij,t−1 + vij,t,

λii,t = ãi,t/max0≤s≤t ãi,s, ãi,t = riãi,t−1 + ηi,t,

where εi,t, vij,t and ηi,t are independent i.i.d. standard normal variates, and ri ≤ r < 1 are

positive real numbers. The above assumption implies ||Ψt||sp ≤ r < 1.

Table 3.1 reports the average MSE of kernel estimates of all elements of Ψt in (3.1) based

on 1000 replications for m = 2, 8 and various values of the bandwidth Hψ. The Gaussian

kernel is used. Tables confirm that the estimator of Ψt is consistent. A good choice for the

bandwidth seems to be a value around n0.5-n0.6, while the dimension of the model is only

a minor determinant of the performance of the estimator: we see that a large model with 8

variables is as well estimated as a much smaller bivariate model.
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Table 3.1: Average MSE for Ψ̂t.

m = 2 m = 8

Hψ\n 100 200 400 800 100 200 400 800

n0.2 0.13 0.10 0.08 0.07 0.33 0.21 0.15 0.11

n0.4 0.07 0.05 0.03 0.02 0.08 0.05 0.03 0.02

n0.5 0.06 0.04 0.03 0.02 0.05 0.04 0.02 0.02

n0.6 0.07 0.05 0.04 0.03 0.04 0.03 0.02 0.02

n0.8 0.08 0.07 0.06 0.06 0.04 0.03 0.02 0.02

3.2 Results for stochastic volatility

In this section we explore the consistency property of the estimator for the time varying

volatility h2
t of the error term ut = htεt of the univariate AR(1) autoregressive model with

parameter ψt defined as in the previous subsection:

yt = ψt−1yt−1 + ut, ut = htεt,

where ht = c exp(at/
√
t), at = at−1 + vt and εt, vt are independent i.i.d. standard normal

noises, and c > 0 is selected such that Eh2
t = 1/25. To estimate the time varying random

volatility h2
t , we use the estimate (2.10):

ĥ2
t =

(∑n
k=1 L( t−kHh

)
)−1∑n

k=1 L( t−kHh
)û2
t , ûk = yk − ψtyk−1.

We consider a variety of values for the two bandwidths Hh ≤ Hψ and the sample sizes

n = 100, 200, 400, 800. Results for the Gaussian kernel estimates are reported in Table 3.3.

They clearly suggest that the estimator is consistent albeit less well performing than the

one relating to the VAR coefficients. That is of course expected. In general, values of Hψ

around n0.5-n0.6 perform well when combined with Hh around n0.4.

4 Empirical application

In this section, we use kernel methods to estimate a VAR model for the 7 variable Smets-

Wouters data set that, as far as we know, would be intractable for the estimation methods

based on MCMC algorithms. The data are for the United States, quarterly, and the sample

period runs from 1956Q4 through to 2010Q2. The time series comprise quarterly growth

rates (log differences) of GDP, investment, consumption, real wages, and also the levels of

hours worked, the Federal Funds rate and quarterly inflation. We use HΨ = Hh = n1/2 and

a Gaussian kernel for the estimation. We develop two themes in the application. The first

is on inflation predictability, a focus of the Cogley and Sargent (2005) paper that helped

popularize the use of the Bayesian method for estimating time varying VARs with empirical

macroeconomists. The second is on measuring changes in the estimated impulse response

to identified shocks using sign restrictions.
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Table 3.2: Average MSE for ĥt, m = 1.

Hψ Hh\n 100 200 400 800 Hψ Hh\n 100 200 400 800

n0.4 n0.2 0.05 0.05 0.04 0.04 n0.7 n0.7 0.08 0.07 0.06 0.06

n0.4 n0.3 0.04 0.04 0.03 0.03 n0.8 n0.2 0.26 0.28 0.26 0.23

n0.4 n0.4 0.04 0.03 0.03 0.02 n0.8 n0.3 0.22 0.21 0.20 0.20

n0.5 n0.2 0.07 0.07 0.06 0.05 n0.8 n0.4 0.17 0.17 0.16 0.17

n0.5 n0.3 0.06 0.05 0.04 0.04 n0.8 n0.5 0.14 0.14 0.13 0.13

n0.5 n0.4 0.05 0.04 0.04 0.03 n0.8 n0.6 0.12 0.12 0.12 0.11

n0.5 n0.5 0.05 0.04 0.04 0.03 n0.8 n0.7 0.11 0.11 0.11 0.09

n0.6 n0.2 0.10 0.09 0.09 0.07 n0.8 n0.8 0.10 0.10 0.10 0.09

n0.6 n0.3 0.08 0.08 0.07 0.06 n0.9 n0.2 0.32 0.37 0.45 0.41

n0.6 n0.4 0.07 0.06 0.05 0.05 n0.9 n0.3 0.29 0.33 0.37 0.36

n0.6 n0.5 0.06 0.06 0.05 0.04 n0.9 n0.4 0.25 0.27 0.30 0.34

n0.6 n0.6 0.06 0.05 0.05 0.04 n0.9 n0.5 0.21 0.21 0.27 0.24

n0.7 n0.2 0.15 0.15 0.16 0.12 n0.9 n0.6 0.18 0.19 0.23 0.20

n0.7 n0.3 0.12 0.12 0.12 0.10 n0.9 n0.7 0.16 0.17 0.17 0.18

n0.7 n0.4 0.11 0.10 0.09 0.08 n0.9 n0.8 0.14 0.14 0.15 0.16

n0.7 n0.5 0.09 0.09 0.07 0.07 n0.9 n0.9 0.13 0.13 0.14 0.14

n0.7 n0.6 0.08 0.08 0.07 0.06

4.1 Changes in inflation predictability

Following Cogley and Sargent (2005), the predictability P jt of the ith variable of the vector

of observables Y at horizon j and time t, is defined as

P jt = 1−
e′i
∑j−1

k=0

(
Ψk
t

)
Σt

(
Ψk
t

)′
ei

e′i
∑∞

k=0

(
Ψk
t

)
Σt

(
Ψk
t

)′
ei
,

where ei is a selector matrix with a 1 on the ith row and zeros elsewhere. To provide

intuition, consider a univariate model for inflation πt = ρtπt−1 + ut. Then, predictability

at horizon 2 is given by P 2
t = ρ2

t , which in univariate studies is often labelled as squared

‘persistence’. So, the measure P jt is a multivariate counterpart to persistence.

Inflation predictability has been of interest for many reasons. Firstly, changes in pre-

dictability can be thought of as a way of characterising changes in macroeconomic perfor-

mance. The underlying context is some macroeconomic model in which ideal monetary

policy stabilises inflation perfectly up to some unforecastable error, in which case there is

no inflation predictability. A fall in predictability came to be accepted as a main feature of

the Great Moderation period, arising out of more effective monetary policy. Another reason

for interest in this concept relates to what one might infer about the state of economy from

strong variability in predictability. Predictability can arise from hard-wired features of pri-

vate agents in a DSGE model like indexation, habits or investment adjustment costs. It can
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also be produced by monetary or fiscal policy. However, the more one observes variation

in predictability, the less one is likely to conclude that it is the product of private agent

behavioural features, which are supposed to be time variant. If one needs time-variation in

behavioural features of a model to capture changes in macro dynamics, then, staying true

to the spirit of microfounded model building, one probably has a mis-specified model.

We compute the Cogley-Sargent measure of inflation predictability for our 7 and 4

variable systems and plot them side by side below.

The l.h.s. chart for the 7 variable system of Figure 1 reveals that there have been some

pronounced fluctuations in predictability, particularly in the last ten to fifteen years. But

yet there is no clear delineation between pre- and post-Volcker episodes, emphasised in

the early work by Cogley and Sargent (2005). Interestingly, this feature seems to be more

evident in the 4 variable system, where one can see a pronounced fall in predictability in

the early 1980s coincident with the Volcker appointment, and another very pronounced fall

in the early 2000s, reversed by the end of the sample. Based on the 7 variable model we

would say that the 4 variable model overstates the changes in predictability. In so far, as

changes in monetary policy were adduced to be the cause of these changes in predictability,

the 7 variable model would again suggest more evidence of continuity in monetary policy

than is evident from the 4 variable system.

4.2 Shifts in the impulse response functions to identified monetary policy

and technology shocks

Another way to investigate the nature of the process yt via the time varying VAR(1) model is

to see what it implies about the changing impulse response functions to identified structural

shocks εt. In order to proceed, we identify these shocks using sign restrictions. Although

it is well known how this is executed, we recap briefly here, especially because we apply a

more general algorithm than the one usually used.

We factorise the volatility matrix Σt = P tDtP
′
t of the m-dimensional reduced form

error ut = Ht−1εt, at time t, as

Σt = BtB
′
t, Bt = P tD

1/2
t ,

where the columns of the m × m matrix Pt contain the eigenvectors of Σt, and Dt is a

diagonal matrix containing the eigenvalues of Σt. Such a factorisation is not unique, since

for any nonsingular orthogonal matrix Qt, it holds that

Σt = BtQtQ
′
tB
′
t.

Fitting the VAR(1) model with intercept to yt, and using estimates Ψ̂t and Σûû,t, the

impulse responses R(j; t) at horizon j ≥ 1 are computed as:

R̂(j; t) ≡ R
(
j; t, Ψ̂tΣûû,t

)
= Ψ̂

j

tB̂tQt.
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They define the moving-average representation yt = µ̂t +
∑t−1

j=0 Ψ̂
j

tut−j + op(1) = µ̂t +∑t−1
j=0 R̂(j; t)εt−j + op(1). We will identify rotations Qt = Qt(θ) parametrized by a set of

parameters θ, that satisfy particular sign restrictions (4.1) for R(1; t) at horizon j = 1. The

intention is to choose sign restrictions (4.1) that feature in different business cycle models

(see, e.g., Peersman and Straub (2009)).

The search through the grid of parameters for possible rotations Qt is undertaken, with

Qt parameterised as the product

Qt(θ) =
n−1∏
i=1

n∏
j=i+1

Inij(θij), 0 ≤ θij ≤ π/2,

of Givens rotations:

Inpq(θ) =



1 . . . 0 . . . 0 . . . 0

. . .
. . . . . . . . . . . . . . . . . .

0 . . . cos(θ) . . . − sin(θ) . . . 0
...

...
...

...
...

...
...

0 . . . sin(θ) . . . cos(θ) . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 . . . 0 . . . 1


, 0 ≤ θ ≤ π/2,

where p < q denote the positions on the diagonal taken by cos(θ). θ is the n(n−1)/2 vector

containing all the scalar θij . These matrices respect the desired property that Inpq(θ)I
n′
pq(θ) =

I. It is obvious that

Qt(θ)Qt(θ)
′ = I.

We find it useful to search through multiple products of such rotations. This increases

the number of acceptable rotations, which may be beneficial when imposing many restric-

tions, restrictions at multiple horizons, or repeat the analysis at every point in time as we

do.

In our 7-variable VAR, among seven shocks, ε1t, · · · , ε7t, we identify four shocks: mon-

etary policy, technology, labour supply and demand shocks, using sign restrictions set

out in the table below. Blank cells indicate that the responses are left free. Restric-

tions are imposed on impact, R1,t, only. In equation yt = µt + εt + R1,tεt−1 + · · · for

y = (∆c, ∆i, ∆y, h π, ∆w/p, r), the four lines of R1,t of impulse response at horizon j = 1

with signs as in (4.1) identify the required four shocks εi1t, · · · , εi4t:

∆c ∆i ∆y h π ∆w/p r

monetary policy - - - - +

technology + + -

labour supply + + - -

demand + + + + +

(4.1)
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In the table above, ∆ denotes log difference, c consumption, i, investment, y GDP, h

hours π inflation, w/p real wages and r the Federal Funds Rate. Translating the signs

above into words: a contractionary monetary policy shock εi1t (that raises nominal interest

rates) is taken to be one that causes inflation, GDP, consumption and investment all to

fall, on impact. A positive technology shock εi2t is supposed to raise output and investment

on impact, and to lower inflation. Importantly, we leave the response of hours worked

free, so we can comment on whether time-variation is related to the question of the sign of

this impulse response. A positive labour supply shock εi3t is taken to be one that reduces

real wages and inflation and increases hours worked and output. A demand shock εi2t is

identified as something that causes monetary policy to tighten, but despite that induces an

increase in real wages, inflation, output and consumption. We concern ourselves only with

the monetary policy and technology shocks, but identify others to improve the precision of

our analysis.

Our identification scheme for the technology shock warrants some comment. Early

papers in the debate by Gali (1999) and Christiano, Eichenbaum, and Vigfusson (2003)

used a long run restriction and identified technology shocks as the only thing that should

contribute to long run changes in labour productivity. We adopt a different strategy, akin

to that used by Peersman and Straub (2009), but with two differences. First, we leave the

response of technology to real wages free. We leave it free because we found we could do

without it: in our results we find that on impact of the technology shock, real wages rise.

A second difference is that we include investment and restrict its response to be positive,

while Peersman and Straub (2009) leave investment out of their set of observables.

We also identify monetary policy and technology shocks from the 4 variable VAR, so that

we can gauge whether inference about changing impulse responses is affected by limiting

the dimension of the VAR. Relevant sign restrictions are shown below.

∆y π ∆i h

monetary policy - - +

technology + -

The first object we look at is the impulse response of output ∆y to the monetary policy

shock. This gives us an overall impression of the strength of nominal rigidities in the

economy: with flexible prices and wages, a monetary policy shock would have no effect on

output at all. The chart below shows the impulse response of output to a monetary policy

shock, under the assumption that the reduced form VAR has time varying volatilities, which

means that the size of the shock hitting the economy is potentially different at different

points in time, so that we can nevertheless compare like with like. The impulse responses

are normalised so as to deliver a 25 basis points increase on impact of the shock in the

central bank policy rate r.

The magnitude of the response of output, measured by the eyeballing the absolute

distance of the impulse response away from the zero plane, has fluctuated a lot. The

cleanest indicator of the degree of nominal rigidities is the response on impact effect of
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the monetary policy shock. Looking at the l.h.s. panel of Figure 2 which records the

results for the 7 variable VAR, we might adduce that the economy evolved toward being a

more flex-price economy (the impact of the shock falls from the beginning of the sample).

Also the tendency for the economy to oscilate thereafter reduces, suggestive of the fact that

corrective monetary policy responses improved. The 4 variable VAR shows some differences

in these patterns. For a start, for most of the period the 4 variable VAR understates the

impact of the monetary policy shock. Second, although the fall in the impact is captured

by this smaller system, the 4 variable VAR shows the impact growing again towards the

end of the sample, a change that is much less evident in the 7 variable system.

We turn next to the impulse response of hours worked to a technology shock. To set the

scene, and give a flavour of the importance of this object, it is useful to recap briefly on the

empirical macro-literature on this topic. The influential work by Gali (1999) contested the

real business cycle view that technology shocks were a key driver of the business cycle, which

had been at the forefront of the debate since the seminal work of Kydland and Prescott

(1982). He identified technology shocks as being the only thing that gave rise to long run

changes in labour productivity. He estimated that these shocks caused hours worked to

fall. This implies that either the RBC account of business cycles is incorrect, or at least

incomplete; or the model has to be modified to change the sign of the response of hours

worked: the sticky price version of the RBC model does this, or some other shock was

responsible for the major part of business cycles. Christiano, Eichenbaum, and Vigfusson

(2003) made things look better for the RBC model by noting that whether hours rise or

fall depends on whether the per capita hours work variable enters the VAR in levels or

rates of change. Peersman and Straub (2009), whose sign restriction identification scheme

most closely resembles ours, found that hours worked rise. An interesting comparison for

our purposes is with Gali and Gambetti (2009). They estimate a 2-variable time varying

VAR involving hours and labour productivity for the US using estimation based on MCMC

algorithms. Technology shocks, as in the original Gali (1999) paper, identified to be the

only shocks that explain labour productivity in the long run. They find that the impulse

response of hours worked to a technology shock is always negative, but gets less so over

time.

Figure 3 below shows our impulse response functions, from the VAR with time varying

reduced form volatilities, and for both the 4 and 7 variable VARs. To compare like with

like, we normalise the impulse responses here so that on impact the technology shock has a

25 basis points effect on output, imposed to be positive in the sign restrictions identification

scheme.1

1For the monetary policy shock, one can uniquely and fairly uncontroversially normalise the impulse

responses over time so that they have the same effect on impact on the policy rate, thereby eliminating

variability in the IRF due to time variation in the volatilities. When identifying time variation in changes

in a tax instrument, normalisation could be achieved by isolating the impact of the shock on some tax rate.

However, for shocks to economic primitives like technology there is no unique way to normalise the impulse

responses, and doing it using output seems reasonable.
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We find clear evidence of time-variation in impulse responses in the 7 variable system.

The impulse of hours worked to our identified technology shock starts out small and nega-

tive, showing the economy resembling a sticky price version of the RBC model with fairly

weak propagation, and evolves steadily to the most recent period to be large, hump-shaped,

and positive, looking much more like a traditional flex-price real business cycle model. (Note

the echo here with the evolution in the impulse response of output to a monetary policy

shock, which also shows some evidence of the economy becoming more like a flex-price econ-

omy in the first half of the sample). This mirrors the Peersman and Straub (2009) results,

which use an identification scheme most similar to ours. The results of Gali and Gambetti

(2009) are comparable in the sense that he also finds that the economy comes to resemble

the RBC economy more, but his impulse response starts out markedly negative, and fin-

ishes the sample period marginally negative, whereas ours becomes markedly positive. The

4-variable system fails to pick up the tendency for the impulse response of hours to become

more positive. There are some marked fluctuations in the 4 variable impulse response, but

no clear pattern emerges, as indicated in the 7 variable system.

5 Concluding remarks

Giraitis, Kapetanios, and Yates (2011) offered an alternative, kernel-based method for es-

timating simple autoregressive models with stochastic time varying coefficients, in which

parameters are assumed to be bounded random walks. This paper extends the theoreti-

cal results to the case of more realistic, multivariate models with time-varying volatilities,

and shows through Monte-Carlo evidence that the theoretical results translate into good

small-sample performance.

We also apply the estimation method to a 7 variable VAR with time-varying volatilities

estimated on the US Smets-Wouters data set. We compute time-variation in three objects

that have been the focus of attention in recent research in empirical macroeconomics. We

find some evidence that the impulse response of output to a monetary policy shock has got

smaller, as though the economy has become more like a flexible price economy. It appears

that the impulse response of hours worked to a technology shock has become steadily more

positive through the sample period, also implying that the economy has become more like

a flex-price RBC economy. We also find fluctuations in inflation predictability, but no clear

evidence that predictability fell in post-Volcker period, as has been advocated by previous

work. Our results suggest some advantage in using the 7 variable system, since estimates

of a 4 variable system contradict those from the larger system in a number of respects.

To begin with, the 4-variable system understates both the impact of and changes in the

impact of the monetary policy shock on output. Second, the 4-variable system fails to

record the slow increase in the response of hours worked to a technology shock. Third, the

4 variable system shows a much more marked difference pre- and post-Volcker in inflation

predictability, when the 7 variable system was suggestive of more continuity in this respect.
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6 Appendix

6.1 Proof of Theorems 2.1-2.3

In the proof we use repeatedly the following properties of the spectral ||.||sp and Euclidean

||.|| norms of matrices: ||AB||sp ≤ ||A||sp||B||sp, ||AB|| ≤ ||A||sp||B||, and for a vector a it

holds ||u||sp = ||u||. For a symmetric positive definite matrix A we denote by A1/2 a unique

positive definite square root of A.

Recall notation H̄ = H when K has finite support, and H̄ = H log1/2H when K has

infinite support. In addition to κn,ψ of (2.11), we define

κ∗n,ψ := (H̄ψ/n)1/2 +H−1
ψ , κ∗n,h := (H̄h/n)1/2 +H−1

h .

We will use the following property of the weights btj (see (6.16) in Giraitis, Kapetanios,

and Yates (2011)): for t = [τn] (0 < τ < 1) there exists b > 0 such that, as H →∞,∑
1≤j≤n, |t−j|≥bH̄ btj = o(1), (6.1)∑n
j=1 ktj ∼ H,

∑n
j=1 k

2
tj ∼ βH, β > 0.

Proof of Theorem 2.1. Part (2.6) follows applying recursion (2.1). To show (2.7), note

that by Assumptions 2.1-2.2, ||Πt,j ||sp ≤ rj , E||y0||4 <∞ and maxj≥0E||uj ||4 <∞, which

together with (i) implies

||yt|| ≤
t−1∑
j=0

||Πt,j ||sp||ut−j ||+ ||Πt,t||sp||y0|| ≤
t−1∑
j=0

rj ||ut−j ||+ rt||y0||,

E||yt||4 ≤ (max
j≥0

E||uj ||4 + E||y0||4)(

∞∑
j=0

rj)4 <∞.

To show (2.8), use the |a1 · · · aj − b1 · · · bj | = |(a1 − b1)a2 · · · ak + b1(a2 − b2)a3 · · · aj +

b1 · · · bj−1(aj − bj)| ≤ jmaxi=1,··· ,j |ai − bi|aj−1, if |ai| ≤ a and |bi| ≤ a, to obtain

||Πt,j −Ψj
t ||sp ≤ jrj−1 max

i=1,··· ,j
||Ψt−i −Ψt||sp. (6.2)

Denote Rt,h := maxs:|s−t|≤h ||Ψt −Ψs||sp, where h→∞ and h = o(t). Then, by (2.6),

||yt − zt|| ≤
t−1∑
j=1

||Πt,j −Ψj
t ||sp||ut−j ||+ ||Πt,t||sp||y0||

≤ Rt,h
h∑
j=1

jrj−1||ut−j ||+ {2
t−1∑

j=h+1

jrj ||ut−j ||+ rt||y0||} =: Rt,hzt,h,1 + zt,h,2 = op(1),

because Rt,h = Op(h/t) = op(1) by Assumption 2.1, whereas Ezt,h,1 ≤ E||u1||
∑∞

j=1 jr
j−1 <

∞ and Ezt,h,2 ≤ C
∑∞

j=h+1 jr
j → 0 as h→∞ implies zt,h,1 = Op(1) and zt,h,2 = op(1). 2
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Proof of Theorem 2.2. (i) First we prove (2.12). Set

V yy,t := K−1
t

n∑
j=1

ktjyj−1y
′
j−1, Suy,t := K−1

t

n∑
j=1

ktjujy
′
j−1, Σuu,t := L−1

t

n∑
j=1

ltjuju
′
j . (6.3)

Then, Ψ̂t = Syy,tV
−1
yy,t. We will show that

||Ψ̂t −Ψt − Suy,tV −1
yy,t||sp = Op(κ

∗
n,ψ). (6.4)

Then ||Ψ̂t−Ψt|| ≤ ||Ψ̂t−Ψt−Suy,tV −1
yy,t||sp+ ||Suy,t||sp||V −1

yy,t||sp = Op(κ
∗
n,ψ)+Op(κn,ψ) =

Op(κn,ψ) by (6.4), noting that ||Suy,t||sp = Op(H
−1/2
ψ ) by Lemma 6.2(i), and ||V −1

yy,t||sp =

Op(1) by Lemma 6.1(vi), which proves (2.12). Since by (2.1),

Ψ̂t −Ψt = (Suy,t + rt)V
−1
yy,t, rt := K−1

t

∑n
j=1 ktj(Ψj−1 −Ψt)yj−1y

′
j−1, (6.5)

(6.4) follows from

||rt||sp = Op
(
(H̄ψ/n)1/2 +H−1

ψ

)
. (6.6)

To show (6.6), select h = bH̄ψ such that (6.1) holds. By Assumptions 2.1 and 2.2, Rt,h =

Op
(
(h/t)1/2

)
= Op

(
(H̄ψ/n)1/2

)
, ||Ψt−j −Ψt||sp ≤ ||Ψt−j ||sp + ||Ψt||sp ≤ 2r, E||u1||2 < ∞.

Therefore,

||rt||sp ≤ K−1
t

∑n
j=1 ktj ||Ψt−j −Ψt||sp||yj−1||2 ≤ Rtqn,1 + qn,2,

where qn,1 := K−1
t

∑h
j=1 ktj ||yj−1||2 and qn,2 := 2rK−1

t

∑n
j=1:|j−t|>h ktj ||yj−1||2.

Observe that Eqn,1 ≤ CK−1
t

∑h
j=1 ktj ≤ C and Eqn,2 ≤ CK−1

t

∑
j:|t−j|≥h ktj =

H−1
ψ O(1) = O(H−1

ψ ) by (6.1) which implies qn,1 = Op(1) and qn,2 = Op(H
−1
ψ ). This proves

(6.6): ||rt||sp = Op
(
(h/t)1/2

)
Op(1) + OP (H−1

ψ ) = OP
(
(H̄ψ/n)1/2 +H−1

ψ

)
, which completes

the proof of (6.6) and (2.12).

(ii) Proof of (2.14). Denote by Tn,t := (Kt/K2,t)
1/2H−1

t−1(Ψ̂t−Ψt)
(∑n

j=1 ktjyj−1y
′
j−1

)1/2
a

the l.h.s. of (2.14). By (6.5), one can write

Tn,t = (Kt/K
1/2
2,t )H−1

t−1Suy,tV
−1/2
yy,t a+ (Kt/K

1/2
2,t )H−1

t−1rtV
−1/2
yy,t a := Tn,t;1 + Tn,t;2.

By Lemma 6.2(ii), Tn,t;1 →D N (0, I). It remains to show ||Tn,t;2||sp →p 0. By (6.1),

Kt/K
1/2
2,t = O(H

1/2
ψ ). Hence, ||Tn,t;2||sp ≤ CH

1/2
ψ ||H

−1
t−1||sp||rt||sp||V

−1/2
yy,t ||sp, where

||H−1
t−1||sp = Op(1) by Assumption 2.2(iii), ||rt||sp satisfies (6.6) and ||V −1/2

yy,t ||sp = Op(1) by

Lemma 6.1(vi). So, ||Tn,t;2||sp ≤ CH
1/2
ψ Op

(
(H̄ψ/n)1/2 + H−1

ψ

)
= op(1) for HψH̄ψ = o(n),

which completes the proof of (2.14).

(iii) Proof of (2.13). Use

Σûû,t − Σt = ( Σûû,t − Σuu,t) + ( Σuu,t − Σt), (6.7)
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to bound ||Σûû,t − Σt||sp ≤ || Σûû,t − Σuu,t||sp + || Σuu,t − Σt||sp. By Lemma 6.5(i),

|| Σûû,t − Σuu,t||sp = Op
(
κ2
n,ψ + κn,h), while by (6.31) of Lemma 6.3, || Σuu,t − Σt||sp =

Op
(
κn,h

)
, which yields (2.13): ||Σûû,t − Σt||sp = Op

(
κ2
n,ψ + κn,h).

To complete the proof, observe that κ2
n,ψ ≤ 2((H̄ψ/n) + H−1

ψ ) ≤ 2κn,h =

2((H̄h/n)1/2 + H
−1/2
h ) under assumption H

1/2
h ≤ Hψ ≤ (Hhn/ log2 n)1/2, because

H−1
ψ ≤ H

−1/2
h when H

1/2
h ≤ Hψ, and (H̄ψ/n) ≤ (H̄h/n)1/2 since (H̄ψ/n)/(H̄h/n)1/2 ≤

log n(Hψ/n)/(Hh/n)1/2 < 1 for Hψ ≤ (Hhn)1/2/ log n.

Proof of (2.15). Use (6.7), to write

(Lt/L
1/2
2,t )H−1

t−1(Σûû,t −Σt)H
′−1
t−1 = qn,t + rn,t,

where qn,t := (Lt/L
1/2
2,t )H−1

t−1( Σuu,t − Σt)H
′−1
t−1 and rn,t := (Lt/L

1/2
2,t )H−1

t−1( Σûû,t −
Σuu,t)H

′−1
t−1. Notice that assumption HhH̄h = o(n) implies Hh = o(n1/2). Thus,

by Lemma 6.3(ii), qn,t →D Z. It remains to show that ||rn,t||sp →p 0. By (6.43),

|| Σûû,t − Σuu,t||sp = Op(κ
2
n,ψ + (H̄h/n)1/2 + H−1

h ) = o(H
−1/2
h ) because (H̄h/n)1/2 =

o(H
−1/2
h ) under assumption HhH̄h = o(n), and κ2

n,ψ ≤ 2((H̄ψ/n) + H−1
ψ ) = o(H

−1/2
h )

under assumption H
1/2
h << Hψ << n/(Hh log n)1/2. Recall that by (6.1), Lt/L

1/2
2,t =

O(H
1/2
h ), and ||H−1

t−1||sp = Op(1) by Assumption (2.2)(iii). Therefore, ||rn,t||sp ≤
(Lt/L

1/2
2,t )||H−1

t−1||2sp||rn,t||sp = O(H
1/2
h )op(H

−1/2
h ) = op(1) which completes the proof of

(2.15) and of the theorem. 2

Proof of Theorem 2.3.

Proof of the claims about ȳt. Note that

|| ȳt − µt|| ≤ || ȳt − µt − ¯̇yt||+ || ¯̇yt|| = Op(κn,ψ) (6.8)

since || ȳt − µt − ¯̇yt|| = Op(κ
∗
n,ψ) by Lemma 6.4(ii), and || ¯̇yt|| ≡ ||K−1

t

∑n
j=1 ktjẏj || =

Op(κn,ψ) by (6.37) of Lemma 6.4, which proves (2.18).

To show (2.19), write

(Kt/K
1/2
2,t )H−1

t−1(1−Ψt)(µ̂t − µt) = (Kt/K
1/2
2,t )H−1

t−1(1−Ψt) ¯̇yt

+(Kt/K
1/2
2,t )H−1

t−1(1−Ψt)(µ̂t − µ̄t − ¯̇yt) =: vn,1 + vn,2.

By (6.38) of Lemma 6.4, vn,1 →D N (0, I). Thus, to prove (2.19), it remains to show

that ||vn,2|| = op(1). Indeed, ||vn,2|| ≤ (Kt/K
1/2
2,t )||H−1

t−1||sp||1 − Ψt||sp||µt − µ̄t − ¯̇yt|| =

O(H
1/2
ψ )Op(κ

∗
n,ψ), because (Kt/K

1/2
2,t ) = O(H

1/2
ψ ) by (6.1), ||H−1

t−1|| = Op(1) by Assumption

2.2(iii), ||1−Ψt||sp ≤ 1+ ||Ψt||sp ≤ 1+r by Assumption 2.1, and ||µt− µ̄t− ¯̇yt|| = Op(κ
∗
n,ψ)

by Lemma 6.4. Since κ∗n,ψ = o(H
−1/2
ψ ) for HψH̄ψ = o(n), this implies ||vn,2|| = op(1).

Proof of the claims about Ψ̂t. Using notation (6.3), write Ψ̂t ≡ Ψ̂ŷŷ,t = Sŷŷ,tV
−1
ŷŷ,t.

Notice that Ψ̂ẏẏ,t = Sẏẏ,tV
−1
ẏẏ,t is an estimate of Ψt of a VAR(1) model ẏj with no

intercept of (2.17). Therefore it has consistency property (2.12) and satisfies asymptotic
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normality (2.14) of Theorem 2.2. Write

Ψ̂ŷŷ,t −Ψt = (Ψ̂ẏẏ,t −Ψt) + (Ψ̂ŷŷ,t − Ψ̂ẏẏ,t). (6.9)

To prove consistency claim (2.18) of Theorem 2.3, bound ||Ψ̂ŷŷ,t −Ψt||sp ≤ ||Ψ̂ẏẏ,t −
Ψt||sp + ||Ψ̂ŷŷ,t− Ψ̂ẏẏ,t||sp, where ||Ψ̂ẏẏ,t−Ψt||sp = Op(κn,ψ) by (2.12) of Theorem 2.2, and

jn := ||Ψ̂ŷŷ,t − Ψ̂ẏẏ,t||sp = Op(κ
∗
n,ψ). (6.10)

Indeed, jn = ||Sŷŷ,tV −1
ŷŷ,t − Sẏẏ,tV

−1
ẏẏ,t||sp ≤ ||Sŷŷ,t − Sẏẏ,t||sp||V −1

ŷŷ,t||sp + ||Sẏẏ,t||sp||V −1
ŷŷ,t −

V −1
ẏẏ,t||sp = Op(κ

∗
n,ψ) because by Lemma 6.5(iii), ||Sŷŷ,t − Sẏẏ,t||sp = Op(κ

∗
n,ψ), ||V −1

ŷŷ,t||sp =

Op(1) and ||V −1
ŷŷ,t − V −1

ẏẏ,t||sp = Op(κ
∗
n,ψ), while ||Sẏẏ,t||sp = Op(1) because E||Sẏẏ,t||sp ≤

K−1
t

∑n
j=1 ktlE||ẏj ||||ẏj−1|| ≤ CK−1

t

∑n
j=1 ktl = C in view of (2.7). So, jn = Op(κ

∗
n,ψ) and

||Ψ̂ŷŷ,t −Ψt||sp = Op(κn,ψ) +Op(κ
∗
n,ψ) = Op(κn,ψ), which proves (2.18).

To show the asymptotic normality (2.20) of Theorem 2.3, denote by in the

l.h.s. of (2.20). Then, in = (Kt/K2,t)
1/2H−1

t−1(Ψ̂ẏẏt − Ψt)
(∑n

j=1 ktjŷj−1ŷ
′
j−1

)1/2
+(Kt/K2,t)

1/2H−1
t−1(Ψ̂ŷŷt − Ψ̂ẏẏ,t)

(∑n
j=1 ktjŷj−1ŷ

′
j−1

)1/2
=: in,1 + in,2, where in,1 →D

N (0, I) by (2.14) of Theorem 2.2. To complete the proof it remains to show ||in,2|| = op(1).

Bound in,2 ≤ (Kt/K
1/2
2,t )||H−1

t−1|| ||Ψ̂ŷŷ,t−Ψt||sp||V −1/2
ŷŷ,t ||sp, where (Kt/K

1/2
2,t ) = O(H

1/2
ψ ) by

(6.1), ||Ψ̂ŷŷ,t − Ψ̂ẏẏ,t||sp = Op(κ
∗
n,ψ) by (6.10), ||H−1

t−1|| = Op(1) by Assumption 2.2(iii) and

||V −1/2
ŷŷ,t ||sp = ||V −1

ŷŷ,t||
1/2
sp = Op(1) by Lemma 6.5(iii). Hence, in,2 = O(H

1/2
ψ )Op(κ

∗
n,ψ) = op(1)

since κ∗n,ψ = o(H
−1/2
ψ ) when HψH̄ψ = o(n). This proves (2.20).

Proof of the claims about α̂t. Use relations α̂t = ȳt − Ψ̂tȳt and αt = µt −Ψt−1µt−1 to

decompose

α̂t −αt = (1− Ψ̂t)ȳt − (µt −Ψt−1µt−1) =
{

(1−Ψt)(ȳt − yt)− (Ψ̂t −Ψt)µt
}

−
{

(Ψ̂t −Ψt)(ȳt − µt) + (Ψtµt −Ψt−1µt−1)
}

=: an,1 − an,2. (6.11)

To show consistency (2.18), bound ||α̂t − αt|| ≤ ||an,1|| + ||an,2||, where ||an,1|| ≤ ||1 −
Ψt||sp||ȳt − yt||+ ||Ψ̂t −Ψt||sp||µt|| = Op(κn,ψ) because ||1−Ψt||sp ≤ 1 + ||Ψt||sp ≤ 1 + r

by Assumption 2.1, ||ȳt − yt|| = Op(κn,ψ) and ||Ψ̂t −Ψt||sp = Op(κn,ψ) by Theorem 2.3(i),

and ||µt|| = Op(1) by Assumption 2.3. In turn, ||an,2|| = Op(κn,ψ) follows from

||an,2|| = op(κn,ψ). (6.12)

To verify the latter, bound ||an,2|| ≤ ||Ψ̂t − Ψt||sp||ȳt − yt||sp +{||Ψt −Ψt−1||sp||µt||
+||Ψt−1||sp||µt − µt−1||} =: sn,1 + sn,2 where sn,1 = Op(κ

2
n,ψ) by Theorem 2.3(i), while

Assumptions 2.2 and 2.3 imply that sn,2 = op
(
(Hψ/n)1/2

)
= op(κn,ψ). Hence ||an,2|| =

Op(κ
2
n,ψ) + op(κn,ψ) = op(κn,ψ) completing the proof of (6.12) and verifying consistency

claim (2.18) for α̂t.

To show asymptotic normality (2.20), use (6.11) and notation D̂t of Remark

2.2, to write vn := (Kt/K
1/2
2,t )H−1

t−1(α̂t − αt)D̂
−1/2

t = (Kt/K
1/2
2,t )H−1

t−1an,1D̂
−1/2

t −
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(Kt/K
1/2
2,t )H−1

t−1an,2D̂
−1/2

t =: vn,1 − vn,2, where vn,1 →D N (0, I) by (6.39) of Lemma 6.4.

Therefore, to verify (2.20) it remains to show

||vn,2|| = op(1). (6.13)

Bound ||vn,2|| ≤ (Kt/K
1/2
2,t )||H−1

t−1||sp||an,2|| ||D̂
−1/2

t ||, where Kt/K
1/2
2,t = O(H

1/2
ψ ) by (6.1),

||H−1
t−1||sp = Op(1) by Assumption 2.2(iii), ||an,2|| = op(κn,ψ) by (6.12) and ||D̂

−1/2

t || =

Op(1) by Lemma 6.5(iv). Hence, ||vn,2|| = O(H
1/2
ψ )op(κn,ψ) = oP (1) since κn,ψ = O(H

−1/2
ψ )

under assumption HψH̄ψ = o(n). This completes the proof of (6.13) and (2.20).

Proof of the claims about Σûû,t. To show (2.18), bound ||Σûû,t−Σt||sp ≤ ||Σûû,t−Σuu,t||sp+

||Σuu,t − Σt||sp = Op
(
κ2
n,ψ + κn,h

)
+ Op(κn,h) by Lemma 6.5(ii) and Lemma 6.3(i), which

proves (2.18).

To show (2.21), write (Lt/L
1/2
2,t )H−1

t−1(Σûû,t − Σt)H
′−1
t−1= (Lt/L

1/2
2,t )H−1

t−1( Σuu,t −
Σt)H

′−1
t−1+(Lt/L

1/2
2,t )H−1

t−1( Σûû,t− Σuu,t)H
′−1
t−1 =: qn,1+qn,2. By (2.15), qn,1 →D Z, while

||qn,2|| = op(1). Indeed, ||qn,2||sp ≤ CH
1/2
h ||H

−1
t−1||2sp|| Σûû,t − Σuu,t||sp where Lt/L

1/2
2,t =

O(H
1/2
h ), ||H−1

t−1||sp = Op(1) and || Σûû,t − Σuu,t||sp = Op
(
κ2
n,ψ + (H̄h/n)1/2 + H−1

h

)
by

Lemma 6.5(ii). Hence, ||qn,2||sp = O(H
1/2
h )Op

(
κ2
n,ψ + (H̄h/n)1/2 + H−1

h

)
= op(1), be-

cause HhH̄h = o(n) implies (H̄h/n)1/2 = op(H
−1/2
h ), while assumption H

1/2
h << Hψ <<

n/(Hh log n)1/2 ensures that κ2
n,ψ = op(H

−1/2
h ). This completes the proof of (2.21) and the

theorem. 2

Proof of Proposition 2.2. By (2.23), µt =
∑t−1

j=0 Πt,jαt−j . Write

µt+k − µt =
∑t+k−1

j=0 Πt+k,jαt+k−j −
∑t−1

j=0 Πt,jαt−j = {
∑t−1

j=0(Πt+k,j −Πt,j)αt−j}

+{
∑t−1

j=0 Πt+k,j(αt+k−j −αt−j) +
∑t+k−1

j=t Πt+k,jαt+k−j} := m̃(t, k) +m(t, k).

It remains to show that m̃(t, k) and m(t, k) satisfy conditions of Assumption 2.3. Recall

that ||Πt+k,j ||sp ≤ rj by (2.5), and maxj E||αj || <∞ by Assumption 2.3.

Bound ||m̃(t, k)|| ≤
∑h

j=0 ||Πt+k,j −Πt,j ||sp||αt−j ||+
∑t−1

j=h+1 rj ||αt−j ||.
By same argument as in the proof of (6.2), for k ≤ h, maxj=1,...,h ||Πt+k,j − Πt,j ||sp ≤

Cjrj−1Rt,3h. Therefore, ||m̃(t, k)|| ≤ CRt,3h
∑h

j=1 jr
j−1||αt−j || +

∑t−1
j=h+1 r

j ||αt−j || =:

CRt,3hsn,h,1 + sn,h,2. By (2.3), Rt,3h = Op((h/t)
1/2), while Esn,h,1 ≤ C

∑∞
j=1 jr

j−1 < ∞
implies sn,h,1 = Op(1) and Esn,h,2 ≤ C

∑∞
j=h+1 r

j ≤ Crh ≤ Ch−1 implies sn,h,1 = Op(h
−1).

Hence maxk≤h ||m̃(t, k)|| = Op(Rt,3h + h−1) = Op((h/t)
1/2 + h−1), Therefore m(t, k) is as

in Assumption 2.3.

Bound ||m(t, k)|| ≤
∑t−1

j=0 r
j ||αt+k−j − αt−j || +

∑t+k−1
j=t rj ||αt+k−j ||. By Assumption

2.3, E||αt+k−j −αt−j ||2 ≤ C(k/(t− j)) ≤ C(k/t) for j ≤ t/2. Thus,

E||m(t, k)||2 ≤ 2
((∑t/2

j=0 r
j ||αt+k−j −αt−j ||

)2
+
(∑t−1

j=t/2 r
j ||αt+k−j −αt−j ||

)2
+
(∑t+k−1

j=t rj ||αt+k−j
∣∣|)2
)
≤ C

(
(k/t)

(∑t/2
j=0 r

j
)2

+ (
∑∞

j=t/2 r
j)2
)
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≤ C((k/t) + rt/2) ≤ C(k/t).

Therefore m(t, k) satisfies condition of Assumption 2.3. 2

6.2 Auxiliary lemmas

This section contain auxiliary lemmas used to prove Theorems 2.1-2.3.

Lemma 6.1. Under assumptions of Theorem 2.2(i), with V ψ,t as in (2.16),

(i) ||V yy,t − V ψ,t||sp = op(1), (ii) ||V −1
ψ,t||sp = Op(1), (6.14)

(iii) ||V −1
yy,t − V

−1
ψ,t||sp = op(1); (iv) ||V −1/2

yy,t − V
−1/2
ψ,t−h||sp = op(1), h = o(t);

(v) ||V −1
yy,t − V

−1
ψ,t−h||sp = op(1), h = o(t),

(vi) ||V −1
yy,t||sp = Op(1), ||V −1/2

yy,t ||sp = Op(1).

Proof. First we show (6.14)(i). Write V yy,t = Ψt V yy,tΨt + Σt + rt, where rt :=

( Σ∗uu,t − Σt) + ( V yy,t − Ψt V yy,tΨy,t − Σ∗uu,t), where Σ∗uu,t := K−1
t

∑n
j=1 ktjuju

′
j is

computed using weights ktj . (Recall that in Σuu,t of (6.3) the weights ltj are used.)

By recursion,

V yy,t = Ψp
tV yy,tΨ

′
t
p

+
∑p−1

k=0 Ψk
tΣtΨ

′
t
k

+
∑p−1

k=0 Ψk
t rtΨ

′
t
k
.

Recall that ||Ψt||sp ≤ r < 1 by Assumption 2.1. Hence, for p ≥ 1,

||V yy,t − V ψ,t||sp ≤ ||Ψp
tV yy,tΨ

′
t
p||sp +

∑∞
k=p ||Ψ

k
tΣtΨ

′
t
k||sp + ||

∑p−1
k=0 Ψk

t rtΨ
′
t
k||sp

≤ ||Ψp
t ||2sp||V yy,t||sp +

∑∞
k=p ||Ψt||2ksp ||Σt||sp +

∑p−1
k=0 ||Ψt||2ksp ||rt||sp

≤ r2p||V yy,t||sp + ||Σt||sp
∑∞

k=p r
2k + ||rt||sp

∑p−1
k=0 r

2k

≤ r2p
(
||V yy,t||sp + (1− r2)−1||Σt||sp

)
+ (1− r2)−1||rt||sp.

Notice that ||Σt||sp ≤ ||Ht−1||2sp = Op(1) by Assumption 2.2(ii), and E||V yy,t||sp ≤
L−1
t

∑n
j=1 ktjE||yj−1||2 ≤ CK−1

t

∑n
j=1 ktj ≤ C by (2.7). This implies (6.14)(i): ||V yy,t −

V ψ,t||sp = Op(1)(r2p + || rt||sp) = op(1) because of r2p → 0 as p→∞ and

||rt||sp = op(1). (6.15)

To verify (6.15), we bound ||rt||sp ≤ || Σ∗uu,t − Σt||sp + ||V yy,t −ΨtV yy,tΨt − Σ∗uu,t||sp =:

rt,1+rt,2 and show that ||rt,i||sp = op(1), i = 1, 2. By (6.31), rt,1 = Op
(
(H̄ψ/n)1/2+H

−1/2
ψ

)
=

op(1). To evaluate rt,2, use (2.1) to write yjy
′
j = (Ψj−1yj−1+uj)(y

′
j−1Ψ

′
j−1+u′j), to obtain

yj−1y
′
j−1−Ψtyj−1y

′
j−1Ψ

′
t−uju′j = {yj−1y

′
j−1− yjy′j}+ {Ψj−1yj−1u

′
j +ujy

′
j−1Ψ

′
j−1}+

{Ψj−1yj−1y
′
j−1Ψ

′
j−1 −Ψtyj−1y

′
j−1Ψ

′
t} =: ztj,1 + ztj,2 + ztj,3. Use this to write

V yy,t −ΨtV yy,tΨt −Σuu,t = K−1
t

∑n
j=1 ktj(yj−1y

′
j−1 −Ψtyj−1y

′
j−1Ψ

′
t − uju′j)

= Tn,1 + Tn,2 + Tn,3, Tn,i = H−1
t

∑n
j=1 ktjztj,i, i = 1, 2, 3.
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Hence, ||rt,2||sp ≤ ||Tn,1||sp + ||Tn,2||sp + ||Tn,3||sp, and it remains to verify that

||Tn,i||sp = op(1), i = 1, 2, 3. (6.16)

Observe that ||Tn,1||sp = ||
∑n

j=1(ktj−kt,j−1)yj−1y
′
j−1−ktnyny′n+kt0y0y

′
0||sp ≤

∑n
j=1 |ktj−

kt,j−1|||yj−1||2+ktn||yn||2+kt0||y0||2. By Assumption 2.2(i) and (2.7), maxj≥0E||yj ||2 <∞;

by (6.1) K−1
t ≤ H−1

ψ , while by (2.9) and the mean value theorem, |ktj−kt,j−1| ≤ CH−1
ψ (1+

(j/Hψ)2)−1. Hence,

E||Tn,1||sp ≤ CK−1
t (
∑n

j=1 |ktj − kt,j−1|+ C)

≤ CH−2
ψ

∑n
j=1

(
1 + (j/Hψ)2

)−1
+O(H−1

ψ ) = O(H−1
ψ ),

which implies (6.16) for i = 1.

Since yj = Hj−1εj where εj i.i.d. random vectors, it is easy to verify that

||Tn,2||sp = Op(H
−1/2
ψ ) = op(1), see e.g. proof of (6.21). Finally, to bound ||Tn,3||sp

note that ||ztj,3||sp = ||(Ψj−1 − Ψt)yj−1y
′
j−1Ψ

′
j−1+ Ψtyj−1y

′
j−1(Ψ′j−1 − Ψ′t)+ (Ψj−1 −

Ψt)yj−1y
′
j−1(Ψ′j−1−Ψ′t)||sp ≤ 2||Ψj−1−Ψt||sp||Ψt||sp||yj−1||2+ ||Ψj−1−Ψt||2sp||yj−1||2 ≤

4r||Ψj−1 − Ψt||sp||yj−1||2. Therefore, by the same argument as in the proof of (6.6), it

follows that ||Tn,3||sp = Op
(
(H̄ψ/n)1/2 +H−1

ψ

)
= op(1), which completes the proof of (6.16)

and the claim (6.14)(i).

To verify (6.14)(ii), we show that

||V −1
ψ,t||sp ≤ ||Σ

−1
t ||sp = Op(1).

Recall that Σt = Ht−1H
′
t−1, and ||H−1

t−1||sp = OP (1) by Assumption 2.2(iii), which implies

||Σ−1
t ||sp = ||H−1

t−1||2sp = OP (1). Moreover, ||Σ−1
t ||sp = λ−1

min,Σ and ||V −1
ψ,t||sp = λ−1

min,ψ where

λmin,Σ = inf ||x||=1 x
′Σtx and λmin,ψ = inf ||x||=1 x

′V ψ,tx are the smallest eigenvalues of Σt

and V ψ,t, respectively. To prove (6.2) it remains to show that λmin,ψ ≥ λmin,Σ. For any

real m-dimensional vector x, ||x|| = 1,

x′V ψ,tx ≥ x′Σtx+ (x′Ψt)Σt(x
′Ψt)

′ ≥ λmin,Σ||x||2 + λmin,Σ||x′Ψt||2sp ≥ λmin,Σ

which implies λmin,ψ ≥ λmin,Σ completing the proof of (6.2) and (6.14)(ii).

To prove (6.14)(iii), write V yy,t = V ψ,t(I + ∆t), ∆t := V −1
ψ,t(V yy,t −V ψ,t). Notice that

||∆t||sp ≤ ||V −1
ψ,t||sp||V yy,t−V ψ,t||sp = op(1) by (6.14)(ii) and (i). Therefore V −1

yy,t−V
−1
ψ,t =

V −1
ψ,t

(
(1 + ∆t)

−1 − I
)
, and ||V −1

yy,t − V
−1
ψ,t||sp ≤ ||V

−1
ψ,t||sp||(1 + ∆t)

−1 − I||sp = op(1) since

||V −1
ψ,t||sp = OP (1) by (6.14)(vi) and ||(1+∆t)

−1−I||sp = Op
(
||∆t||sp/(1−||∆t||sp)

)
= op(1).

This completes the proof of (iii).

To show (6.14)(iv), bound ||V −1/2
yy,t − V

−1/2
ψ,t−h||sp ≤ ||V

−1/2
yy,t − V

−1/2
ψ,t ||sp + ||V −1/2

ψ,t −
V
−1/2
ψ,t−h||sp. It remains to show that

(a) ||V −1/2
yy,t − V

−1/2
ψ,t ||sp = op(1), (b) ||V −1/2

ψ,t − V
−1/2
ψ,t−h||sp = op(1). (6.17)
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To prove (a), we use the following results (xii) and (xi) of Davies (1973) p.496: for

any positive definite symmetric matrices A and B, such that ||A− B||sp||A−1||sp ≤ ε with

ε < 1/2, it holds

||A1/2 −B1/2||sp||A−1/2||sp ≤ ε. (6.18)

Moreover, ||A1/2||sp = ||A||1/2sp , which implies ||A−1/2||sp = 1/||A||1/2sp .

The matrixes A := V ψ,t and B := V yy,t are positive definite and have property ||A −
B||sp = op(1) by (6.14)(i) and ||A−1||sp = Op(1) by Lemma 6.1(ii). Therefore, by (6.18)

||V 1/2
yy,t − V

1/2
ψ,t ||sp||V

−1/2
ψ,t ||sp = op(1). Thus,

||V −1/2
yy,t − V

−1/2
ψ,t ||sp = ||V −1/2

yy,t (V
1/2
ψ,t − V

1/2
yy,t)V

−1/2
ψ,t ||sp (6.19)

≤ ||V −1/2
yy,t ||sp||V

1/2
ψ,t − V

1/2
yy,t||sp||V

−1/2
ψ,t ||sp = ||V −1/2

yy,t ||spop(1) = op(1),

since ||V −1/2
yy,t ||sp = ||V −1

yy,t||
1/2
sp = Op(1) by Lemma 6.1(vi).

The claim (b) can be verified applying the same argument as in the proof of (a), not-

ing that ||V −1/2
ψ,t ||sp = Op(1) and ||V −1/2

ψ,t−h||sp = Op(1) by Lemma (6.1)(ii), and verifying

that ||V ψ,t − V ψ,t−h||sp = op(1). To show the latter, observe that || V ψ,t − V ψ,t0 ||sp ≤∑∞
k=0 ||Ψ

k
t ΣtΨ

′
t
k − Ψk

t0 Σt0Ψ
′
t0
k||sp. Using ||Ψt||sp ≤ r < 1 of Assumption 2.1 together

with (6.2) type bound gives

||V ψ,t − V ψ,t0 ||sp ≤ (
∑∞

k=1 kr
2k−1)||Ψt −Ψt0 ||sp(||Σt||sp + ||Σt0 ||sp) (6.20)

+(
∑∞

k=0 r
2k)||Σt −Σt0 ||sp = op(1)

since ||Ψt −Ψt0 ||sp = op(1) by Assumption 2.1, whereas by Assumption 2.2(ii), ||Σt||sp =

Op(1), ||Σt0 ||sp = Op(1) and ||Σt−Σt0 ||sp = op(1). This proves (b) and completes the proof

of (6.14)(iv).

To show (6.14)(v), bound ||V −1
yy,t − V −1

ψ,t−h||sp ≤ ||V −1
yy,t − V −1

ψ,t||sp + ||V −1
ψ,t −

V −1
ψ,t−h||sp where ||V −1

yy,t − V
−1
ψ,t||sp = op(1) by Lemma 6.1(iii), and ||V −1

ψ,t − V
−1
ψ,t−h||sp ≤

||V −1
ψ,t−h||sp||V ψ,t − V ψ,t−h||sp||V −1

ψ,t||sp = op(1) by Lemma 6.1(ii) and (6.20).

To show (6.14)(vi), notice that ||V −1
yy,t||sp ≤ ||V

−1
yy,t − V

−1
ψ,t||sp + ||V −1

ψ,t||sp = Op(1) by

(6.14)(ii)-(iii), which also implies ||V −1/2
yy,t ||sp = ||V −1

yy,t||
1/2
sp = Op(1). This completes the

proof of the lemma. 2

Lemma 6.2. Let Suy,t be as in (6.5).

(i) Under assumptions of Theorem 2.2(i),

(a) ||Suy,t||sp = Op(H
−1/2
ψ ), (b) ||K−1

t

n∑
j=1

ktj uj || = Op(H
−1/2
ψ ). (6.21)

(ii) Under assumptions of Theorem 2.2(ii), for any m× 1 vector a such that ||a|| = 1,

(Kt/K
1/2
2,t )H−1

t−1Suy,tV
−1/2
yy,t a→D N (0, I). (6.22)

25



Proof. (i) To show (6.21)(a) note that by definition (2.4), Eu′juk = 0 if j 6= k. Thus,

E||Suy,t||2 = K−2
t trace

(
E(S′uy,tSuy,t)

)
= K−2

t trace
(
E
∑n

j=1 k
2
tjyj−1u

′
jujy

′
j−1

)
≤ K−2

t

∑n
j=1 k

2
tjE(||yj−1||2||uj ||2) ≤ CK−2

t

∑n
j=1 k

2
tj ≤ CH

−1
ψ

by (6.1), since maxj≥0(E(||yj ||4 + E||uj ||4) < ∞ by (2.7) and Assumption 2.2. The same

argument implies (6.21)(b).

(ii) In view of the Cramér-Wold device, it suffices to verify that for any m× 1 vector b, the

scalar random variable pn,t := (Kt/K
1/2
2,t )b′H−1

t−1Suy,tV
−1/2
yy,t a has property

pn,t →D N (0, b′b).

Set t0 = t − h, where h = bH̄ψ is such that (6.1) holds. With V ψ,t0 =
∑∞

k=0 Ψk
t0 Σt0Ψ

′
t0
k

defined as in Remark 2.1, write

pn,t = (Kt/K
1/2
2,t )b′Sεy,tV

−1/2
ψ,t0

a

+(Kt/K
1/2
2,t )b′

[
(H−1

t−1Suy,t − Sεy,t)V
−1/2
ψ,t0

+ Suy,t(V
−1/2
yy,t − V

−1/2
ψ,t0

)
]
a =: pn,t;1 + pn,t;2.

It suffices to show that

(a) pn,t;1 →D N (0, b′b), (b) pn,t;2 →p 0. (6.23)

Proof of (6.23)(a). Setting ξtj := K
−1/2
2,t b′εjy

′
j−1V

−1/2
ψ,t0

a, write

pn,t;1 =
∑n

j=1 ktjξtj =
∑
|j−t|≤h ktjξtj +

∑
|j−t|≥h ktjξtj =: qn,1 + qn,2.

Observe that qn,2 ≤ ||b||2 ||V −1/2
ψ,t0
||2spK

−1/2
2,t

∑
|j−t|≥h ktj ||εjyj−1|| = op(1) since

||V −1/2
ψ,t0
||sp = ||V −1

ψ,t0
||1/2sp = Op(1) (6.24)

by Lemma 6.1(ii), and E
∑
|j−t|≥h ktj ||εjyj−1|| ≤ C

∑
|j−t|≥h ktj = o(1) by (6.1). It remains

to show qn,1 →D N (0, b′b). In view of (2.4) and definition of V −1
ψ,t0

, qn,1 is a sum of

martingale differences ξtj , E[ξtj |Fj−1] = 0, |j − t| ≤ h. By the central limit theorem for

martingale differences (see Corollary 3.1 in Hall and Heyde (1980)) it suffices to show that

for any ε > 0,

jn :=
∑
|t−j|<h k

2
tjE[ξ2

tj |Fj−1]→p b
′b, (6.25)

vn,ε :=
∑
|t−j|<hE[k2

tjξ
2
tjI(k2

tjξ
2
tj > ε)|Fj−1]→ 0. (6.26)

By definition V
−1/2
ψ,t0

is Ft0 measurable. Therefore

E[ξ2
tj |Fj−1] = K−1

2,t E(b′εj)
2a′V

−1/2
ψ,t0

yj−1y
′
j−1V

−1/2
ψ,t0

a for j > t− h = t0
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where E(b′εj)
2 = ||b||2. Setting Ṽyy,t := K−1

2,t

∑
|t−j|<h k

2
tjyj−1y

′
j−1, we obtain

jn := ||b||2a′V −1/2
ψ,t0

Ṽyy,tV
−1/2
ψ,t0

a = ||b||2 + rn,

where rn = ||b||2a′V −1/2
ψ,t0

(Ṽyy,t − V ψ,t0)V
−1/2
ψ,t0

. To prove (6.25) it remains to show that

rn →p 0. Note that |rn| ≤ ||b||2||V −1/2
ψ,t0
||2sp||Ṽyy,t − V ψ,t0 ||sp = Op(1)||Ṽyy,t − V ψ,t0 ||sp. To

prove (6.25) it remains to show that

||Ṽyy,t − V ψ,t0 ||sp = op(1). (6.27)

Bound ||Ṽyy,t − V ψ,t0 ||sp ≤ ||K−1
2,t

∑n
j=1 k

2
tjyj−1y

′
j−1 − V ψ,t0 ||sp +

||K−1
2,t

∑
|j−k|>h k

2
tjyj−1y

′
j−1||sp = in,1 + in,2 = op(1) where in,1 = op(1) by Lemma 6.1(iii),

and in,2 = op(1), because Ein,2 ≤ K−1
2,t

∑
|j−k|>h k

2
tjE||yj−1||2 ≤ CK−1

2,t

∑
|j−k|>h k

2
tj = o(1)

by (6.1).

To show (6.26), bound vn,ε =
∑
|t−j|<h ε

−1E[k4
tjξ

4
tj |Fj−1]. Note that

E[k4
tjξ

4
tj |Fj−1] = K−2

2,t E(b′εj)
4(y′j−1V

−1/2
ψ,t0

a)4

≤ CK−2
2,t ||y′j−1||4||V

−1/2
ψ,t0
||4sp ≤ CK−2

2,t ||y′j−1||4Op(1),

by (6.24) and because E(b′εj)
4 ≤ ||b||4E||εj ||4 ≤ C. Hence,

vn,ε ≤ Op(1)K−2
2,t

∑
|t−j|<h k

4
tj ||y′j−1||4 = op(1)

since E[K−2
2,t

∑
|t−j|<h k

4
tj ||y′j−1||4] ≤ CK−2

2,t

∑n
j=1 k

2
tj ≤ CK

−1
2,t → 0 by (2.7) and (6.1). This

completes the proof of (6.26) and (6.23)(a).

Proof of (6.23)(b). By (6.1), Kt/K
1/2
2,t = O(H

1/2
ψ ). Therefore

|pn,t;2| ≤ CH1/2
ψ

(
||H−1

t−1Suy,t − Sεy,t||sp||V
−1/2
ψ,t0
||sp + ||Suy,t||sp||V −1/2

yy,t − V
−1/2
ψ,t0
||sp
)
.

We will show below that

||H−1
t−1Suy,t − Sεy,t||sp = op(H

−1/2
ψ ), (6.28)

while ||V −1/2
ψ,t0
||sp = Op(1) by (6.24), ||Suy,t||sp = Op(H

−1/2
ψ ) by Lemma 6.2(i), and

||V −1/2
yy,t − V

−1/2
ψ,t0
||sp = op(1) by Lemma 6.1(iv). Hence |pn,t;2| ≤ CH

1/2
ψ

(
op(H

−1/2
ψ ) +

Op(H
−1/2
ψ )op(1)

)
= op(1) proving (6.23)(b).

To show (6.28), use H−1
t−1uj = H−1

t−1Hj−1εj =εj + H−1
t−1(Hj−1 − Ht−1)εj to ob-

tain H−1
t−1Suy,t − Sεy,t = H−1

t−1K
−1
t

∑n
j=1 ktj(Hj−1 − Ht−1)εjyj−1 =: H−1

t−1qn,t. Thus,

||H−1
t−1Suy,t−Sεy,t||sp ≤ ||H

−1
t−1||sp||qn,t||sp where ||H−1

t−1||sp = Op(1) by Assumption 2.2(iii),

so that it remains to verify that

||qn,t||sp = op(H
−1/2
ψ ). (6.29)
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Observe that

E||(Hj−1 −Ht−1)εjyj−1||sp ≤ (E||Hj−1 −Ht−1||2sp)1/2(E[||εj ||2||yj−1||2)1/2

≤ C(E||Hj−1 −Ht−1||2sp)1/2

since by Assumption 2.2(i) and (2.7), E[||εj ||2||yj−1||2 = E||εj ||2E||yj−1||2 ≤ C for all

j. Moreover, by Assumption 2.2(ii), for |t − j| ≤ t/2, E||Hj−1 −Ht−1||2sp ≤ C|t − j|/t.
Therefore,

E||qn,t||sp = K−1
t

∑n
j=1 ktjE||(Hj−1 −Ht−1)εjyj−1||sp (6.30)

≤ C(Hψ/t)
1/2H−1

ψ

∑
|t−j|≤t/2 ktj(|t− j|/Hψ)1/2 + CH−1

ψ

∑
|t−j|>t/2 ktj

≤ C
(
(Hψ/n)1/2 +H−1

ψ

)
,

by (2.9) and (6.1), bearing in mind that t = [τn]. Together with assumption HH̄ψ = o(n)

this implies ||qn,t||sp = Op
(
(Hψ/n)1/2 + H−1

ψ

)
= op(H

−1/2
ψ ) completing the proof of (6.28)

and (6.23)(b). 2

Lemma 6.3. Under assumptions of Theorem 2.2(i), Σuu,t of (6.3) satisfies

(i) || Σuu,t −Σt||sp = Op
(
κn,h

)
, (6.31)

(ii) (Lt/L
1/2
2,t )H−1

t−1( Σuu,t −Σt)H
′−1
t−1 →D Z if Hh = o(n1/2) (6.32)

with Z as in Theorem 2.2(ii).

Proof. First we show (6.31). Recall Σt = Ht−1H
′
t−1 and Eεjε

′
j = I. Then, Σεε,t :=

L−1
t

∑n
j=1 ltjεjε

′
j has property Ht−1E[ Σεε,t]H

′
t−1 = Σt. Therefore

Σuu,t −Σt = pn,t + δn,t, (6.33)

pn,t := Ht−1

(
Σεε,t − E[Σεε,t]

)
H ′t−1; δn,t = L−1

t

∑n
j=1 ltjξtj ,

where ξtj := uj u
′
j−Ht−1εj ε

′
jH
′
t−1 = Hj−1εj ε

′
jH
′
j−1−Ht−1εj ε

′
jH
′
t−1. Then || Σuu,t−

Σt||sp ≤ ||pn,t||sp + ||δn,t||sp. We will show that

(i) ||pn,t||sp = Op(H
−1/2
h ), (ii) ||δn,t||sp = Op

(
(Hh/n)1/2 +H−1

h

)
(6.34)

which implies (6.31).

The claim (6.34)(i) follows from ||pn,t||sp ≤ ||Ht−1||2sp|| Σεε,t−E[ Σεε,t]||sp = Op(H
−1/2
h )

noting that ||Ht−1||sp = Op(1) by Assumption 2.2 (ii), and because for independent εj ’s it

holds E|| Σεε,t − E[ Σεε,t]||2sp ≤ CL−2
t

∑n
j=1 l

2
tj ≤ CH−1

h by (6.1) which implies || Σεε,t −
E[ Σεε,t]||sp = Op(H

−1/2
h ).

To prove (6.34)(ii), observe that

||ξtj ||sp ≤ ||(Hj−1 −Ht−1)εjε
′
jH
′
j−1||sp+||Ht−1εjε

′
j(Hj−1−Ht−1)′||sp

≤ ||Hj−1 −Ht−1||sp||Hj−1||sp||εj ||2+||Hj−1 −Ht−1||sp||Ht−1||sp||εj ||2.
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≤ (||Ht||sp + 1)||Hj−1 −Ht−1||sp(||Hj−1||sp + 1)||εj ||2.

By Assumption 2.2(ii), ||Ht||sp = Op(1), and E[||Hj−1 −Ht−1||sp(||Hj−1||sp + 1)||εj ||2]≤
(E||Hj−1−Ht−1||2sp)1/2(E(1+||Hj−1||sp||)2)1/2E||εj ||2 ≤ C(E||Hj−1−Ht−1||2sp)1/2. Hence

(6.34)(ii) follows by the same argument as in the proof of (6.29).

Proof of (6.32). Using (6.33), write

(Lt/L
1/2
2,t )H−1

t−1( Σuu,t −Σt)H
′−1
t−1 =: qn,1 + qn,2,

where qn,1 = (Lt/L
1/2
2,t )( Σεε,t − E[ Σεε,t]) and qn,2 := (Lt/L

1/2
2,t )H−1

t−1δn,tH
′−1
t−1. To prove

(6.32) it suffices to show that

(i) qn,1 →D Z, (ii) ||qn,2||sp →p 0. (6.35)

To verify (6.35)(i), observe that qn,1 is a m×m matrix

qn,1 = L
−1/2
2,t

∑n
j=1 ltjεjε

′
j = (zn,ik)i,k=1,...,m

with a typical (i, k)-th element zn,ik = L
−1/2
2,t

∑n
j=1 ltj(εijεkj − E[εijεkj ]). Since εj =

(ε1j , · · · , εmj)′ is the vector of independent i.i.d. noises {εij}, i = 1, · · · ,m, the elements

zn,ik’s for different (i, k)’s are independent. Thus, to prove (i), it suffices to show that for

each (i, k),

zn,ik → N(0, v2
ik). (6.36)

Write zn,ik =
∑n

j=1 θnjζj , θnj := L
−1/2
2,t ltj , ζj := εijεkj −E[εijεkj ] as a weighted sum of i.i.d.

random variables ζj with Eζj = 0 and Eζ2
j = v2

ik. Notice that θnj satisfy
∑n

j=1 θ
2
nj = 1 and

maxj=1,...,n |θnj | ≤ CL−1/2
2,t → 0. Thus ζj and θnj satisfy sufficient conditions for asymptotic

normality (6.36) of the sum zn,ik, see e.g. Lemma 2.1 in Abadir et al. (2013).

To verify (6.35)(ii), bound ||qn,2||sp ≤ (Lt/L
1/2
2,t )||H−1

t−1||2sp||δn,t||sp, where Lt/L
1/2
2,t =

O(H
1/2
h ) by (6.1), ||H−1

t−1||sp = Op(1) by Assumption 2.2(iii), and by (6.34) ||δn,t||sp =

Op
(
(Hh/n)1/2 + H−1

h

)
= op(H

−1/2
h ) under assumption Hh = o(n1/2). Hence, ||qn,2||sp =

O(H
1/2
h )op(H

−1/2
h ) = op(1) which completes the proof of (6.35)(ii), (6.32) and the lemma.

2

Lemma 6.4. (i) Under assumptions of Theorem 2.2(i),

ȳt = (1−Ψt)
−1ūt +Op(κ

∗
n,ψ) = (1−Ψt)

−1Ht−1ε̄t +Op(κ
∗
n,ψ) = Op(κn,ψ). (6.37)

In addition, if HψH̄ψ = o(n), then

(Kt/K
1/2
2,t )H−1

t−1(1−Ψt)ȳt →D N (0, I). (6.38)

(ii) Under assumptions of Theorem 2.3(i), ||ȳt − µt − ¯̇yt|| = Op(κ
∗
n,ψ).

(iii) Under assumptions of Theorem 2.3(ii), with D̂t as in Remark 2.2,

(Kt/K
1/2
2,t )H−1

t−1

(
(1−Ψt)(ȳt − yt)− (Ψ̂t −Ψt)µt

)
D̂
−1/2

t →D N (0, I). (6.39)
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Proof (i) Proof of (6.37). By (2.6), yj =
∑j−1

i=0 Πj,iuj−i + Πj,jy0. Thus, ȳj =

K−1
t

∑n
j=1 ktjyj = K−1

t

∑n
j=1 ktj

∑j−1
i=0 Πj,iuj−i + K−1

t

∑n
j=1 ktjΠj,jy0 =: sn,1 + sn,2. We

show that

(a) sn,2 = Op(κ
∗
n,ψ), (b) sn,1 = (1−Ψt)

−1ūt +Op(κ
∗
n,ψ), (6.40)

which implies the first claim of (6.37): yj = (1−Ψt)
−1ūt +Op(κ

∗
n,ψ).

To show (a), use ||Πj,i||sp ≤ ri of (2.5), to obtain ||sn,2|| ≤ ||y0||K−1
t

∑j−1
i=0 ||Πj,i|| ≤

||y0||K−1
t

∑∞
i=0 r

i = Op(H
−1
ψ ) since ||y0|| = Op(1) by Assumption 2.2(i), and K−1

t =

Op(H
−1
ψ ) by (6.1).

To show (b), recall that t = [τn]. Select h = bH̄ψ that satisfies (6.1). Write

sn,1 = K−1
t

∑n−1
i=0

∑n−i
j=1 kt,j+iΠj+i,iuj = K−1

t

∑h
i=0

∑
|j−t|≤h kt,jΨ

i
tuj

+{K−1
t

∑h
i=0

∑
|j−t|≤h(kt,j+iΠj+i,i − kt,jΨi

t)uj}+ {K−1
t

∑h
i=0

∑
|j−t|>h kt,j+iΠj+i,iuj}

+K−1
t

∑n−1
i=h+1

∑n−i
j=1 kt,j+iΠj+i,iuj} =: qn,1 + qn,2 + qn,3.

We verify (b) showing that

qn,1 = (1−Ψt)
−1ūt +Op(κ

∗
n,ψ), qn,2 = Op(κ

∗
n,ψ), qn,3 = Op(κ

∗
n,ψ). (6.41)

To evalute qn,1, observe that qn,1 − (1 − Ψt)
−1ūt =

(∑h
i=0 Ψi

t

)
K−1
t

∑
|j−t|≤h kt,juj−(∑∞

i=0 Ψi
t

)
K−1
t

∑n
j=1 kt,juj . Then,

||qn,1 − (1−Ψt)
−1ūt|| ≤ ||

∑∞
i=h+1 Ψi

t|| ×K−1
t

∑
|j−t|≤h kt,j ||uj ||

+||
∑∞

i=0 Ψi
t|| ×K−1

t

∑
|j−t|>h kt,j ||uj || = an,1bn,1 + an,2bn,2.

Observe that an,1 ≤
∑∞

i=h+1 r
j ≤ rh(1 − r)−1 = O(h−1) = O(H−1

ψ ), and an,1 ≤
∑∞

i=0 r
j =

(1−r)−1, while bn,1 = Op(1) because Ebn,1 ≤ CK−1
t

∑
|j−t|≤h kt,j = C, and bn,2 = Op(H

−1
ψ )

because Ebn,2 ≤ C ×K−1
t

∑
|j−t|>h ktj = Op(H

−1
ψ ) by (6.1), which proves the claim (6.41)

about qn,1.

To bound qn,2, use ||kt,j+iΠj+i,i−kt,jΨi
t|| ≤ |kt,j+i−kt,j | ||Πj+i,i||sp+kt,j ||Πj+i,i−Ψi

t||sp,
where by (2.9) and the mean value theorem, |kt,j+i − kt,j | ≤ C(i/Hψ)k∗tj , k

∗
tj := (1 +

(j/Hψ)2)−1, ||Πj+i,i||sp ≤ ri, whereas for |j − t| ≤ h, and i ≤ h, arguing as in the proof

of (6.2), it follows that ||Πj+i,i − Ψi
t||sp ≤ iri−1 maxs:|s−t|≤2h ||Ψs − Ψt||sp = iri−1Rt,2h. In

addition, Rt,2h = Op((h/t)
1/2) = Op((H̄ψ/n)1/2) by assumption (2.3). Hence, ||kt,j+iΠj+i,i−

kt,jΨ
i
t|| ≤ (CH−1

ψ +Rt,2h)iri−1(k∗tj + kt,j), and

||qn,2|| ≤ (CH−1
ψ +Rt,2h)(

∑h
i=0 ir

i−1)Tn, Tn := K−1
t

∑
|j−t|≤h(k∗tj + kt,j)||uj ||.

Since ETn ≤ CK−1
t

∑
|j−t|≤h(k∗tj + kt,j) ≤ C, this implies Tn = Op(1), and qn,2 =

Op((H̄ψ/n)1/2 +H−1
ψ ) = Op(κ

∗
n,ψ), which proves (6.41) for qn,2.

Finally, to bound qn,3, note that ||Πj+i,iuj || ≤ ||Πj+i,i||sp||uj || ≤ ri||uj ||, and therefore

Eqn,3 ≤ C(
∑n−1

i=h+1 r
i)K−1

t

∑n−i
j=1 kt,j+i = O(rh) = O(H−1

ψ ) , which implies (6.41). This
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completes the proof of the first claim of (6.37): ȳt = (1 −Ψt)
−1ūt + Op(κ

∗
n,ψ). To show

the second claim ȳt = (1 −Ψt)
−1Ht−1ε̄t + Op(κ

∗
n,ψ), it suffices to verify that qn := (1 −

Ψt)
−1(ūt −Ht−1ε̄t) = Op(κ

∗
n,ψ). Since ||Ψt||sp ≤ r < 1, then ||(1 − Ψt)

−1||sp ≤ 1/(1 −
||Ψt||sp) ≤ 1/(1− r). Therefore,

||qn|| ≤ ||(1−Ψt)
−1||sp||ūt −Ht−1ε̄t|| ≤ CK−1

t

∑n
j=1 ktj ||(uj −Ht−1)εj ||

≤ CK−1
t

∑n
j=1 ktj ||Hj−1 −Ht−1||sp||εj || = Op(κ

∗
n,ψ)

by the same argument as in the proof of (6.30).

Proof of (6.38). By (6.37), (Kt/K
1/2
2,t )H−1

t−1(1−Ψt)ȳt = (Kt/K
1/2
2,t )ε̄t + δn, where

||δn|| = ||(Kt/K
1/2
2,t )H−1

t−1(1−Ψt)Op(κ
∗
n,ψ)||

≤ (Kt/K
1/2
2,t )||H−1

t−1||sp||1−Ψt||Op(κ∗n,ψ) = O(H
−1/2
ψ )Op(κ

∗
n,ψ) = op(1),

because κ∗n,ψ = o(H
−1/2
ψ ) for HψH̄ψ = o(n). It remains to show that (Kt/K

1/2
2,t )ε̄t =

K
−1/2
2,t

∑n
j=1 ktjεj →D N (0, I) which follows by the same argument as proving (6.36).

(ii) By definition, yj = µj + ẏj where ẏj is a VAR(1) process with no intercept. Then

ȳt −µt − ¯̇yt = µ̄t −µt = K−1
t

∑n
j=1 ktj(µj −µt). Thus ||ȳt −µt − ¯̇yt|| = Op(κ

∗
n,ψ) follows

using Assumption 2.3, combining arguments used in the proof of (6.6) and (6.30).

(iii) To prove the asymptotic normality (6.39), denote

qn := (Kt/K
1/2
2,t )H−1

t−1

(
(1−Ψt)(ȳt − yt)− (Ψ̂t −Ψt)µt

)
D̂
−1/2

t .

By Lemma 6.4(ii) and (6.37),

||H−1
t−1(1−Ψt)(ȳt − yt)− ε̄t|| ≤ ||H−1

t−1(1−Ψt)||sp||ȳt − yt − ¯̇yt||+ ||H−1
t−1(1−Ψt)¯̇yt − ε̄t||

≤ ||H−1
t−1||sp||1−Ψt||sp

(
||ȳt − yt − ¯̇yt||+Op(κ

∗
n,ψ)

)
= Op(κ

∗
n,ψ).

Using notation Ψ̂t ≡ Ψ̂ŷŷ,t = Sŷŷ,tV
−1
ŷŷ,t and Ψ̂ẏẏ,t = Sẏẏ,tV

−1
ẏẏ,t of the proof of Theorem

2.3(ii), bound

||H−1
t−1(Ψ̂t −Ψt)− Sεẏ,tV −1

ẏẏ,t||sp ≤ ||H
−1
t−1||sp||Ψ̂ŷŷ,t − Ψ̂ẏẏ,t||sp

+||H−1
t−1||sp||Ψ̂ẏẏ,t −Ψt − Suẏ,tV −1

ẏẏ,t||sp + ||H−1
t−1Suẏ,t − Sεẏ,t||sp||V

−1
ẏẏ,t||sp = Op(κ

∗
n,ψ),

because ||H−1
t−1||sp = Op(1) by Assumption 2.2, ||Ψ̂ŷŷ,t − Ψ̂ẏẏ,t||sp = Op(κ

∗
n,ψ) by (6.10),

||Ψ̂ẏẏ,t − Ψt − Suẏ,tV −1
ẏẏ,t||sp = Op(κ

∗
n,ψ) by (6.4), ||H−1

t−1Suẏ,t − Sεẏ,t||sp = Op(κ
∗
n,ψ) by

(6.28) and ||V −1
ẏẏ,t||sp = Op(1) by Lemma 6.1(vi).

In addition, observe that assumptionHψH̄ψ = o(n) implies κ∗n,ψ = o(H
−1/2
ψ ), Kt/K

1/2
2,t =

Op(H
1/2
ψ ) by (6.1), ||µt|| = Op(1) by Assumption 2.3 and |D̂

−1/2

t | = Op(1) by Lemma

6.5(iv). The above bounds imply

pn = (Kt/K
1/2
2,t )

(
ε̄t − Sεẏ,tV −1

ẏẏ,tµt)D̂
−1/2

t + op(1).
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Let t0 = t − h, where h = bH̄ψ is such that (6.1) holds. Setting ht0 = V −1
ψ,t0
µt0 , Dt0 =

1 + µ′t0V
−1
ψ,t0
µt0 write

pn = (Kt/K
1/2
2,t )

(
ε̄t − Sεẏ,tht0

)
D
−1/2
t0

+
{

(Kt/K
1/2
2,t )ε̄t

(
D̂
−1/2

t −D−1/2
t0

)
− (Kt/K

1/2
2,t )Sεẏ,t(V

−1
ẏẏ,tµtD̂

−1/2

t − ht0D
−1/2
t0

)
}

+ op(1)

=: pn,1 + pn,2 + op(1).

In view of the Cramér-Wold device, it suffices to verify that for any m × 1 vector b, the

scalar random variable dn := b′pn,1 satisfies

(a) b′pn,1 → N (0, ||b||2), (b) ||pn,2|| = op(1). (6.42)

Proof of (6.42)(a). Letting ξtj := K
−1/2
2,t (b′εj)(1−ẏ′j−1ht0) D

−1/2
t0

, write pn,1 =
∑n

j=1 ktjξtj .

Observe that ||ht0 || ≤ ||V −1
ψ,t0
||sp||µt0 || = Op(1) since ||V −1

ψ,t0
||sp = Op(1) by Lemma 6.1(ii),

||µt0 || = Op(1) by Assumption 2.3, while | D−1/2
t0
| = Op(1) by Lemma 6.5(iv). Hence, by

the same argument as in the proof of (6.23)(a) it suffices to show that jn satisfies (6.25)

and vn,ε satisfies (6.26) for the above ξtj ’s. Since ht0 and D
−1/2
t0

are Ft0 measurable then,

for j > t− h = t0,

E[ξ2
tj |Fj−1] = K−1

2,t E(b′εj)
2D
−1/2
t0

(1− ẏ′j−1ht0)′(1− ẏ′j−1ht0)D
−1/2
t0

.

Hence, with Ṽyy,t := K−1
2,t

∑
|t−j|<h k

2
tjẏj−1ẏ

′
j−1 and Sẏ,t := K−1

2,t

∑
|t−j|<h k

2
tjẏj−1, write

jn := ||b||2D−1/2
t0

Qn,tD
−1/2
t0

, Qn,t := K−1
2,t

∑
|t−j|<h

k2
tj(1− ẏ′j−1ht0)′(1− ẏ′j−1ht0),

Qn,t = K−1
2,t

∑
|j−t|≤h k

2
tj − {S′ẏ,tht0 + h′t0Sẏ,t}+ h′t0 Ṽẏẏ,tht0 =: sn,1 + sn,2 + sn,3.

Since sn,1 = 1 + o(1) by (6.1), |sn,1| ≤ 2||Sẏ,t|| ||ht0 || = oP (1) because ||Sẏ,t|| = Op(κn,ψ) =

op(1) by (6.37), and Ṽẏẏ,t = Vψ,t0 + op(1) by (6.27), we obtain

jn := ||b||2D−1/2
t0

(1 + h′t0Vψ,t0ht0)D
−1/2
t0

+ op(1)

= ||b||2D−1/2
t0

(1 + µ′t0V
−1
ψ,t0
µt0)D

−1/2
t0

+ op(1) = ||b||2 + op(1),

proving (6.25) for jn.

To verify (6.26) for vn,ε, observe that E[k4
tjξ

4
tj |Fj−1] = K−2

2,t E(b′εj)
4(1− ẏ′j−1ht0)4 D−2

t0

≤ CK−2
2,t (1 + ||ẏj−1||4 ||ht0 ||4) D−2

t0
where ||ht0 ||4 ≤ ||V −1

ψ,t0
||4sp||µt0 ||

4 = Op(1) by Lemma

6.1(ii) and Assumption 2.3. Hence (6.26) follows by the same argument as in the proof of

Lemma 6.2(ii).

Proof of (6.42)(b). Bound

||pn,2|| ≤ (Kt/K
1/2
2,t )

(
||ε̄t|| |D̂

−1/2

t −D−1/2
t0
|+ ||Sεẏ,t||sp||V −1

ẏẏ,tµtD̂
−1/2

t − ht0D
−1/2
t0
||
)

≤ op(1) +Op(1)||V −1
ẏẏ,tµtD̂

−1/2

t − ht0D
−1/2
t0
||,
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since Kt/K
1/2
2,t ≤ CH

1/2
ψ by (6.1), ||ε̄t|| = Op(H

−1/2
ψ ) by (6.37), |D̂

−1/2

t − D
−1/2
t0
| = op(1)

by Lemma 6.5(iv), and ||Sεẏ,t||sp = Op(H
−1/2
ψ ) by (6.21). Notice that

||V −1
ẏẏ,tµ̂tD̂

−1/2

t − ht0D
−1/2
t0
|| ≤ ||V −1

ẏẏ,t − V
−1
ψ,t0
||sp||µt|| |D̂

−1/2

t |

+||V −1
ψ,t0
||sp||µ̂t − µt0 || |D̂

−1/2

t |+ ||V −1
ψ,t0
||sp||µt0 || |D̂

−1/2

t −D−1/2
t0
| = op(1).

The latter follows noting that ||V −1
ẏẏ,t − V

−1
ψ,t0
||sp = op(1) by Lemma 6.1(v); ||µt|| = Op(1),

||µt0 || = Op(1) and ||µ̂t − µt0 || ≤ ||µ̂t − µt|| + ||µt − µt0 || = op(1) by Theorem 2.3(ii) and

Assumption 2.3; ||V −1
ψ,t0
||sp = Op(1) by Lemma 6.1(ii), |D̂

−1/2

t | = Op(1) by Lemma 6.5(iv),

and |D̂
−1/2

t − D
−1/2
t0
| = op(1) by Lemma 6.5(iv). This proves that ||pn,2|| = op(1) and

completed the proof of the lemma. 2

In Lemma 6.5 we use notation Syy,t, V yy,t, Σuu,t of (6.3) and ẏj of (2.23).

Lemma 6.5. (i) Under assumptions of Theorem 2.2(i)

(a) ||Σûû,t −Σuu,t||sp = Op
(
κ2
n,ψ + κ∗n,ψ

)
, (b) ||Σ−1/2

ûû,t −Σ
−1/2
t ||sp = op(1). (6.43)

(ii) Under assumptions of Theorem 2.3(i),

(a) ||Σûû,t −Σuu,t||sp = Op
(
κ2
n,ψ + κ∗n,ψ

)
, (b) ||Σ−1/2

ûû,t −Σ
−1/2
t ||sp = op(1). (6.44)

(iii) Under assumptions of Theorem 2.3(i),

(a) ||V −1
ŷŷ,t − V

−1
ẏẏ,t||sp = Op(κ

∗
n,ψ), (b)||V −1/2

ŷŷ,t − V
−1/2
ẏẏ,t ||sp = Op(κ

∗
n,ψ), (6.45)

(c) ||Sŷŷ,t − Syy,t||sp = Op(κ
∗
n,ψ), (d)||V −1

ŷŷ,t||sp = Op(1).

(iv) Under assumptions of Theorem 2.3(i), with D̂t and Dt as in Remark 2.2,

(a) D
−1/2
t = Op(1); (b) D̂

−1/2

t = Op(1); (c) |D̂
−1/2

t − D
−1/2
t−h | = op(1), h = o(t).

Proof. (i) To verify (6.43)(a), write Σûû,t − Σuu,t = L−1
t

∑n
j=1 ltj(ûjû

′
j − uju′j). By def-

inition ûj = yj − Ψ̂tyj−1 = (Ψj−1 − Ψ̂t)yj−1 + uj . Hence ûjû
′
j − uju′j = (Ψj−1 −

Ψ̂t)yj−1u
′
j + ujy

′
j−1(Ψj−1 − Ψ̂t)

′ + (Ψj−1 − Ψ̂t)yj−1y
′
j−1(Ψj−1 − Ψ̂t)

′. Use equality

Ψj−1−Ψ̂t = (Ψj−1−Ψt)+(Ψt−Ψ̂t) and the bound ||(Ψj−1−Ψ̂t)yj−1y
′
j−1(Ψj−1−Ψ̂t)

′||sp ≤
(||Ψj−1 −Ψt||sp + ||Ψ̂t −Ψt||sp)2||yj−1||2 ≤ 2(||Ψj−1 −Ψt||2sp + ||Ψ̂t −Ψt||2sp)||yj−1||2, to

obtain

||Σûû,t −Σuu,t||sp ≤ 2L−1
t

∑n
j=1 ltj ||ujy′j−1(Ψj−1 −Ψt)

′||sp
+2||Ψt − Ψ̂t||sp||L−1

t

∑n
j=1 ltjujy

′
j−1||sp + 2||Ψt − Ψ̂t||2spL−1

t

∑n
j=1 ltj ||yj−1||2

+2L−1
t

∑n
j=1 ltj ||Ψj−1 −Ψt||2sp||yj−1||2

:= 2(qn,1 + ||Ψt − Ψ̂t||spqn,2 + ||Ψt − Ψ̂t||2spqn,3 + qn,4).

By Theorem 2.2(i), ||Ψt − Ψ̂t||sp = Op(κn,ψ); by Lemma 6.2(i), qn,2 = Op(H
−1/2
h ); by

the same argument as in the proof of (6.6), it follows that qn,i = Op
(
(H̄h/n)1/2 + H−1

h

)
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for i = 1 and i = 4, and qn,3 = Op(1) because Eqn,3 ≤ CL−1
t

∑n
j=1 ltj = C by (2.7). So,

||Σûû,t−Σuu,t||sp = Op
(
κ2
n,ψ+κn,ψH

−1/2
h +(H̄h/n)1/2+H−1

h

)
= Op

(
κ2
n,ψ+(H̄h/n)1/2+H−1

h

)
,

proving (6.43)(a).

To show (6.43)(b), we will check

(j) ||Σûû,t −Σt||sp = op(1), (jj) ||Σ−1/2
t ||sp = Op(1), (jjj) ||Σ−1/2

ûû,t ||sp = Op(1), (6.46)

which implies (6.43)(b) arguing as in the proof of (6.19). Firstly, || Σûû,t−Σt||sp ≤ || Σûû,t−
Σuu,t||sp+|| Σuu,t−Σt||sp = op(1) by (6.43)(a) and (6.31). Next, || Σ−1/2

t ||sp ≤ || H−1
t ||sp =

Op(1) by Assumption 2.3(iii), while || Σ−1
ûû,t||sp ≤ || Σ−1

uu,t||sp||(1 + Σ−1
uu,t( Σûû,t −

Σuu,t)
−1||sp ≤ Op

(
1/(1 − || Σ−1

uu,t||sp|| Σûû,t − Σuu,t||sp)
)

= Op(1) implies || Σ−1/2
ûû,t ||sp =

|| Σ−1
ûû,t||

1/2
sp = Op(1). This completes the proof of (6.43)(b).

(ii) Proof of (6.44)(a). By (2.17), yj = µj + ẏj where ẏj is a VAR(1) process with no

intercept, so that ẏj−Ψj−1ẏj−1 = uj . By definition, ûj = ŷj−Ψ̂tŷj−1 where ŷj = yj−ȳt.
Hence,

ûj − uj = ŷj − Ψ̂tŷj−1 − (ẏj −Ψj−1ẏj−1) = (ŷj − ẏj)− (Ψ̂tŷj−1 −Ψj−1ẏj−1)

= (ŷj − ẏj)− Ψ̂t(ŷj−1 − ẏj−1) + (Ψj−1 − Ψ̂t)ẏj−1.

Since ŷj − ẏt = µj − ȳt, then

ûj − uj = (µj − ȳt)− Ψ̂t(µj−1 − ȳt) + (Ψj−1 − Ψ̂t)ẏj−1

=: Dtj = Dtj,1 +Dt,2 +Dt,3ẏj−1, where

Dtj,1 := (µj − µt)− Ψ̂t(µj−1 − µt) + (Ψj−1 −Ψt)ẏj−1,

Dt,2 := (µt − ȳt)− Ψ̂t(µt − ȳt), Dt,3 := Ψt − Ψ̂t.

Then,

ûjû
′
j − uju′j = ujD

′
tj +Dtju

′
j +DtjD

′
tj

= (ujD
′
t,2 +Dt,2u

′
j) + (ujẏ

′
j−1D

′
t,3 +Dt,3ẏj−1u

′
j) + (ujD

′
tj,1 +Dtj,1u

′
j) +DtjD

′
tj .

Hence

||Σûû,t −Σuu,t||sp = ||L−1
t

∑n
j=1 ltj(ûjû

′
j − uju′j)||sp ≤ 2||Dt,2||sp||L−1

t

∑n
j=1 ltjuj ||

+2||Dt,3||sp||L−1
t

∑n
j=1 ltjujẏ

′
j−1||sp + 2L−1

t

∑n
j=1 ltj ||Dtj,1||sp||u̇j ||+ L−1

t

∑n
j=1 ltj ||Dtj ||2sp.

=: sn,1 + sn,2 + sn,3 + sn,4.

It remains to show that

sn,i = Op
(
κ2
n,ψ + (H̄h/n)1/2 +H−1

h

)
, i = 1, ..., 4. (6.47)

Observe that

||Dt,i||sp = Op(κn,ψ), i = 2, 3, (6.48)
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which follows from ||Dt,2||sp ≤ || µt − ȳt||sp + ||Ψ̂t||sp|| µt − ȳt||sp = Op(κn,ψ) and

||Dt,3||sp ≤ || Ψt− Ψ̂t||sp, applying the first two claims of Theorem (2.3)(i). In addition, by

Lemma 6.2(i) ||L−1
t

∑n
j=1 ltj ujẏ

′
j−1||sp = Op(H

−1/2
h ) and ||L−1

t

∑n
j=1 ltj uj || = Op(H

−1/2
h ).

Hence sn,1 + sn,2 = Op(κn,ψH
−1/2
h ) = Op(κ

2
n,ψ +H−2

h ) satisfies (6.47).

To bound sn,3, observe that ||Dtj,1||sp ≤ || µj − µt||sp + ||Ψ̂t||sp|| µj−1 − µt||sp +

||Ψj−1 − Ψt||sp||ẏj−1||. Since ||Ψ̂t||sp = Op(1), then sn,3 ≤ OP (1)L−1
t

∑n
j=1 ltj

(
|| µj −

µt||sp + || µj−1 − µt||sp + ||Ψj−1 − Ψt||sp
)
||u̇j ||(1 + ||ẏj−1||) = Op

(
(H̄h/n)1/2 + H−1

h

)
,

which follows using Assumption 2.3(i)-(ii) and Assumption 2.1 on µj and Ψj , combining

arguments used in the proof of (6.6) and (6.30).

To estimate sn,4, bound ||Dtj ||2 ≤ 3(||Dtj,1||2 + ||Dt,2||2 + ||Dt,3||2||ẏj−1||2). Thus,

sn,4 ≤ 3L−1
t

∑n
j=1 ltj ||Dtj,1||2 + 3{||Dt,2||2 + ||Dt,3||2}L−1

t

∑n
j=1 ltj(1 + ||ẏj−1||2)

=: dn,1 + (||Dt,2||2 + ||Dt,3||2)dn,2 = dn,1 +Op(κ
2
n,ψ)dn,2

by (6.48). The same argument as used above to bound sn3 implies dn,1 = Op
(
(H̄h/n)1/2 +

H−1
h

)
, while by (2.7), Edn,2 = EL−1

t

∑n
j=1 ltj(1 + ||ẏj−1||2) ≤ CL−1

t

∑n
j=1 ltj = C, which

yields dn,2 = Op(1). Hence, sn,4 = Op
(
κ2
n,ψ + (H̄h/n)1/2 +H−1

h

)
. This completes the proof

of (6.47) and (6.44)(a)

To show (6.44)(b), similarly as proving (6.43)(b), it suffices to check validity of (6.46).

In this case, (6.46)(j) follows from (6.44) and (6.31), while (6.46)(jj)-(jjj) hold by the same

argument as in the proof of (6.43)(b). This completes the proof of Lemma 6.5(ii).

(iii) First we show that

|| V ŷŷ,t − V ẏẏ,t||sp = Op(κ
∗
n,ψ). (6.49)

Since ŷj − ẏj = µj − ȳt = ( µj − µt) + ( µt − ȳt), then ŷjŷ
′
j − yj y

′
j = ( µj − ȳt) ẏ′j +

ẏj( µj − ȳt)′ + ( µj − ȳt)( µj − ȳt)′. Then,

||V ŷŷ,t − V ẏẏ,t||sp = ||K−1
t

∑n
j=1 ktj(ŷj−1ŷ

′
j−1 − yj−1y

′
j−1)||sp

≤ 2K−1
t

∑n
j=1 ktj ||µj−1 − µt|| ||ẏj ||+ 2||µt − ȳt|| ||K−1

t

∑n
j=1 ktjẏj ||

+K−1
t

∑n
j=1 ktj ||µj−1 − ȳt||2 =: 2pn,1 + 2pn,2 + pn,3.

It remains to show that

pn,i = Op(κ
∗
n,ψ), i = 1, 2, 3. (6.50)

For i = 1, using Assumption 2.3 about µj , (6.50) follows combining arguments used in the

proof of (6.6) and (6.30).

For i = 2, note that || µt − ȳt|| = Op(κn,ψ) by (6.8) and || ¯̇yt|| ≡ ||K−1
t

∑n
j=1 ktjẏj || =

Op(κn,ψ) by (6.37) of Lemma 6.4, which implies pn,2 = Op(κ
2
n,ψ) = Op(κ

∗
n,ψ).

For i = 3, bound || µj−ȳt||2 = ||( µj− µt)+( µt−ȳt)||2 ≤ 2|| µj− µt||2+2|| µt−ȳt||2

= 2|| µj− µt||2+Op(k
∗
n,ψ). Then pn,3 ≤ K−1

t

∑n
j=1 ktj || µj−1− µt||2+Op(κ

∗
n,ψ) = Op(κ

∗
n,ψ)
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by the same argument in the case i = 1. This completes the proof of (6.49). The same

argument implies (6.45)(c) of the lemma.

To show (6.45)(a), write V ŷŷ,t = V ẏẏ,t(1+∆), ∆ = V −1
ẏẏ,t(V ẏẏ,t− V ŷŷ,t). Observe that

||∆||sp ≤ ||V −1
ẏẏ,t||sp||V ẏẏ,t− V ŷŷ,t||sp = Op(κ

∗
n,ψ) = op(1) by (6.49), and ||V −1

ẏẏ,t||sp = Op(1)

by Lemma 6.1(vi). Then, || V −1
ŷŷ,t−V

−1
ẏẏ,t||sp = ||(1+∆)−1−I||sp = Op(||∆||sp/(1−||∆||sp) =

Op(κ
∗
n,ψ), which proves (a). In addition, || V −1

ŷŷ,t||sp ≤ ||V
−1
ẏẏ,t||sp||(1 + ∆)−1||s = Op

(
(1 −

||∆||sp)−1
)

= Op(1), which proves (d).

Finally, (b) follows from (6.49) and the bounds || V −1
ŷŷ,t||sp = OP (1), ||V −1

ẏẏ,t||sp = Op(1),

arguing as in the proof of (6.19).

Proof of (iv). Observe that D̂t Dt are scalars.

(a) The matrix V ψ,t is symmetric and positive definite. Thus, it has positive eigenvalues

and its spectral decomposition implies that V −1
ψ,t has positive eigenvalues and is positive

definite. Hence with probability tending to 1, Dt = 1 + µ′tV
−1
ψ,tµt ≥ 1 + op(1) which yields

(iv)(a): D
−1/2
t = Op(1).

To show (b), notice that

D̂t −Dt = op(1). (6.51)

Indeed, |D̂t− Dt| = |µ̂′tV̂
−1

ŷŷ,tµ̂t−µ′tV −1
ψ,tµt| ≤ ||µ̂t− µt|| ||V̂

−1

ŷŷ,t||sp||µ̂t||+ || µt|| ||V̂
−1

ŷŷ,t−
V −1
ψ,t||sp||µ̂t|| + || µt|| ||V

−1
ψ,t||sp||µ̂t − µt|| = op(1), since ||µt|| = Op(1), ||µ̂t|| = Op(1) and

||µ̂t − µt|| = op(1) by Assumption 2.3 and Theorem 2.3(ii); || V −1
ŷŷ,t −V

−1
ψ,t||sp ≤ || V

−1
ŷŷ,t −

V −1
ẏẏ,t||sp+ ||V −1

ẏẏ,t−V
−1
ψ,t||sp = op(1) by (6.45)(a) and Lemma 6.1(iii), ||V̂

−1

ŷŷ,t||sp = Op(1) by

(6.45)(d) and ||V −1
ψ,t||sp = Op(1) by Lemma 6.1(ii). 6.1(iii)

Write D̂t = Dt(1 + ∆), ∆ := D−1
t (D̂t −Dt). Then, |∆| ≤ |D−1

t | |D̂t −Dt| = op(1) by

(a) and (6.51), which implies (iv)(b): D̂
−1/2
t = D

−1/2
t (1 + ∆)−1/2 = Op(1).

To show (c), use the bound Dt+ ≥ 1 + op(1) we showed proving (a), to obtain

D̂t = Dt + (D̂t − Dt) = Dt + op(1) ≥ 1 + op(1). This together with (6.51) implies

D̂
−1/2
t − D

−1/2
t−h = (D̂t − Dt−h)(D̂

−1/2
t + D

−1/2
t−h )−1 = (D̂t − Dt−h)Op(1). It remains to

notice that D̂t − Dt−h = (D̂t − Dt) + ( Dt−h − Dt−h) = op(1), because D̂t − Dt =

op(1) by (6.51), while | Dt−h − Dt−h|= | µ′t V −1
ψ,t µt − µ′t−h V

−1
ψ,t−h µt−h| ≤ || µt −

µt−h|| || V −1
ψ,t||sp|| µt|| + || µt−h|| || V −1

ψ,t − V −1
ψ,t−h||sp|| µt|| + || µt−h|| ||V −1

ψ,t−h||sp||µt −
µt−h|| = op(1), since ||µt|| = Op(1), || µt−h|| = Op(1) and || µt − µt−h|| = op(1)

by Assumption 2.3; || V −1
ψ,t − V −1

ψ,t−h||sp = op(1) by (6.17), and ||V −1
ψ,t−h||sp = Op(1),

||V −1
ψ,t−h||sp = Op(1) by Lemma 6.1(ii). This completes the proof of (c) and the lemma. 2
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Figure 1: Inflation Predictability
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Figure 2: Monetary Policy Shock
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Figure 3: Technology Shock
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