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1 Introduction

This paper presents estimates of time-varying parameters of the widely cited dynamic stochastic

general equilibrium (DSGE) model in Smets and Wouters (2007) (referred to hereafter as SW). The

estimation strategy has three parts. It starts by estimating a time-varying reduced-form VAR model in

the same 7 observed variables for the US as the DSGE model, using kernel methods that we proposed

in previous work (Giraitis, Kapetanios, and Yates (2011)). Unlike other methods, kernel estimation

can handle without difficulty a large VAR model. The output of the VAR estimation is a sequence

of hypothetical ‘instantaneous’ VARs corresponding to each period of our sample, differing from each

other by the extent of the time variation estimated in the time-varying VAR.

For each sample period, we identify ‘monetary policy shocks’ using a recursive identification procedure

deployed by Christiano, Eichenbaum, and Evans (2005) (hereafter CEE), and compute the associated

impulse responses. We do this for each of the instantaneous VARs articulated by kernel estimation.

Finally, for each time period, we estimate the DSGE model using indirect inference, searching for the

DSGE parameter vector that minimises the distance between the impulse response functions (that

results from the VAR and our DSGE model. We therefore map changes in reduced form macroeco-

nomic dynamics ( manifesting in the time-varying VAR) into implied changes in the structural DSGE

parameters. Our approach is a deliberate echo of the work of CEE. They estimated a DSGE model,

the precursor to SW, by choosing the parameter constellation that minimise the distance between the

impulse responses to a monetary policy shock in the DSGE model and a fixed-coefficient VAR. Our

exercise generates a time-varying parameter VAR that produces correspondingly time-varying DSGE

estimates. The connection with CEE’s pioneering work is not perfect. To identify the monetary pol-

icy shock, we estimate the SW model, which is essentially the CEE model but with six extra shocks

and without a working capital channel, (which gives us comparability with SW and similar papers).

CEE use a different (Choleski) identification scheme. Their timing restrictions (that inflation and

the output gap, for example, cannot respond within the period) needed to sustain the interpretation

of the Choleski-factored residuals as monetary policy shocks, are not consistent with the SW model.

Therefore, the impulse responses in our estimated model are to be taken not as monetary policy shocks

but as what the literature on indirect inference terms a ‘binding function’, a convenient object that

summarises the data, and for which a DSGE model counterpart can be found and used to enable

estimation.

Our kernel estimator produces a time-varying VAR that embodies substantial time variation, a fact

evident from the associated paths of impulse response functions. They reveal large changes in both

the magnitude and persistence of real and nominal variables to the shock, and in some instances sign

changes too. For example, from the point of view of interpreting the shocks as monetary policy shocks,

for several years centred on 1970, inflation actually rises immediately in response to a contraction,

demonstrating the so-called ‘price puzzle’, but elsewhere is negative.

Time variation in our binding function computed on the data (our impulse responses) naturally gen-

erates time variation in the DSGE parameter estimates chosen to fit them. This time variation is

typically large, relative to the estimated uncertainty surrounding each period’s estimates. We find

that parameters defining nominal rigidities in the model - those that seem not to be easily micro-

founded - vary substantially. The probability that wages and prices are not reset each quarter varies

between about 0.5 and 1 (completely sticky). The indexation parameters for wages and prices vary
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throughout the allowable range of 0 to 1. Parameters that determine the dynamics on the real side

also vary considerably. For example, h, which encodes external consumption habits, varies from 0.5

to 0.9. The labour supply elasticity varies from its lower bound of 0 to 4. The investment adjustment

cost parameter falls dramatically in the later part of the sample as the model attempts to explain the

boom of the early 2000’s and the post-2008 crisis slump in investment. Monetary policy parameters

vary too, though not in a way that corroborates the received view of regime changes during the period.

That view suggests that monetary policy was insufficiently responsive to inflation in the 70’s, but in

the 80’s policy was much more responsive to inflation, and much less responsive to real quantities.1

None of these effects are born out in our estimates.

The upshot of our work is that using a relatively large (7 variable) VAR we find considerable time

variation in macroeconomic dynamics, and this translates to very large fluctuations in many of the

parameters of the benchmark SW DSGE model, some of which are thought by many to have only

dubious microfoundations. The time variation we uncover adds to the circumstantial evidence con-

firming that the microfoundations of these parameters are unsound, and that this DSGE model may

be mis-specified along several dimensions.

The rest of the paper is structured as follows: Section 2 provides a detailed account of the existing

literature. Section 3 provides our theoretical approach while Section 4 presents our empirical results.

Finally, Section 5 concludes. Computational details of the empirical work and a review of the SW

DSGE model are given in Appendices.

2 Connections to existing work

Our findings relate to several strands of thought in the literature in empirical macroeconomics. We

discuss these connections below, distinguishing between the methodological literature on characterising

and detecting structural change, and the empirical literature on uncovering and explaining structural

change in VAR and DSGE model parameters.

2.1 Methodological literature on characterising structural change

The first line of work we want to emphasise is methodological. This paper is the latest in a series of

papers we have written seeking to comment on the standard method for estimating stochastic time-

varying parameter VAR models in macroeconometrics, by offering an alternative, kernel-based method.

These papers include Kapetanios and Yates (2011), which reworked the analysis of evolving inflation

persistence in Cogley and Sargent (2005) using kernel methods; Giraitis, Kapetanios, and Yates (2011)

which derives the theoretical results on consistency and asymptotic normality of the kernel estimator

for an AR(1) model where the coefficients follow a bounded random walk and Giraitis, Kapetanios,

and Yates (2012) which extends consistency results to a VAR(1) model with persistent stochastic

volatility.

The standard method for estimating time-varying coefficient VAR models was presented by Cogley

and Sargent (2005), Cogley, Primiceri, and Sargent (2010) and further developed by Benati and

Surico (2008), Gali and Gambetti (2009), Benati and Mumtaz (2007) and Mumtaz and Surico (2009).

1For examples of this previous work, see Lubik and Schorfheide (2004) and Clarida, Gal, and Gertler (2000)).
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It estimates the paths of VAR parameters and volatilities by casting the VAR as a state-space model

and using Markov chain Monte Carlo (MCMC) techniques to characterise the joint posterior density.

Most macroeconomic practitioners use the Carter and Kohn (1994) algorithm, or algorithms similar to

that, which draw an entire sequence of parameters in the transition equation of the state-space model,

and wish to enforce the restriction that for any time period, the hypothetical VAR is instantaneously

stationary (on the grounds that instances that breach this restriction condition are not economically

meaningful). As discussed in Koop and Potter (2011), this method can quickly become very slow,

or entirely intractable in macroeconomic applications with persistent data, due to a failure to obtain

enough, or even any, draws, satisfying the restriction, when the VAR model has a dimension of 5 or

more. Koop and Potter (2011) present an alternative set of ‘single move’ algorithms that draw states

(VAR parameters) one period at a time, easing this problem substantially, but at the computational

cost of the chain mixing more slowly.

Our kernel estimator is not subject to this problem. It delivers point estimates of the VAR parameter

path (and confidence intervals) directly, and not by deriving a posterior distribution. The stationarity

problem is not eliminated, of course. The frequentist user of the kernel method might find that for

some time periods point estimates of the path of VAR parameter violate the stationarity condition.

If the research question is not meaningful for cases where the stationarity condition is breached, one

would either proceed by either missing out the periods in question, or invoking prior information to

eliminate probability mass on the event that the VAR is explosive in a Bayesian procedure. (In our

empirical work the condition was always satisfied).

These practical benefits - stressed in our earlier work - come into play in this paper because of relatively

large dimension (7 variables) of a VAR model. We assert that such a model would be problematic for

MCMC methods to handle, but time-varying VARs of this size can be analysed easily with our kernel

method.

Our kernel estimator has good theoretical properties such as consistency in the presence of persistent

but stochastic time-varying coefficients. Analogous results are not available for likelihood estimates

using the MCMC approach.

Of course, the debate about how best to characterise structural change is broader than simply a choice

between kernel versus Bayesian coefficient estimation methods. It should be seen in the context of the

larger literature spanning other methods for describing structural change, including i) the literature

on smooth, deterministic change, exemplified by Priestley (1965), Dahlhaus (1996) and Robinson

(1991), ii) on estimating VARs with parameters that follow a Markov process (see, e.g. Sims and

Zha (2006)), and iii) on identifying infrequent and abrupt, structural change, (see, e.g. Chow (1960),

Brown, Durbin, and Evans (1974) and Ploberger and Kramer (1992)).

2.2 Structural change in DSGE models

The second line of work concerns the substantive empirical findings in our paper. The broad framework

for this work is that it asks whether DSGE parameters are time varying or not, or, borrowing the

title of Fernandez-Villaverde and Rubio-Ramirez (2008), “how structural are structural parameters?”

The stakes are high, here, because the hope of DSGE modellers is that the model construction bridges

extends the early real business cycle model of Kydland and Prescott (1982) by incorporating various
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nominal and real frictions, without violating the insistence on microfoundations of that school of

thought. Time variation in the parameters defining these descendants of the early models provides

prima-facie evidence that the microfoundations are suspect.

2.2.1 Mapping from changes in the reduced form VAR to DSGE parameters

There are three variants of this kind of work. One, which includes our paper, first estimates reduced

form time variation and then maps that into, or seeks to interpret this as caused by, time variation

in DSGE parameters. The closest paper in this vein to ours in execution is Hofmann, Peersman,

and Straub (2010) (HPS). They estimate a 4 variable time-varying VAR using Bayesian methods and

identify technology and demand shocks using sign restrictions. Then, they take three snapshots of

the implied estimated impulse responses (at the beginning, middle and end of their sample) and fit a

New Keynesian model with sticky prices, sticky wages and habits in consumption. The model could

be described as a SW model without capital formation. Their three point estimates show changes in

DSGE parameters that are of the same order of magnitude as those we uncover. For example, the

HPS median estimates of the price indexation parameter are 0.15 for 1960, 0.8 for 1974 and 0.17 for

2000. For wages, the analogous figures are 0.3, 0.91 and 0.17.

Our paper departs from HPS along two dimensions. First, we use the kernel estimator to generate the

paths of reduced form VAR coefficients. As a consequence this allows us to estimate a larger, 7-variable

VAR on an updated SW dataset. The hope is that by using more data we can improve identification.2

Second, we estimate DSGE parameters using indirect inference. The impulse response functions we

match are binding functions that connect the DSGE parameters to objects we can estimate on the

data. HPS fit their model by computing impulse response functions to technology shocks identified

using sign restrictions. Partial information techniques like theirs have some advantages, but they

have been shown to aggravate identification problems.

Our paper also differs on a number of details. First, we allow all the parameters of the SW model

to change over time, whereas Hofmann, Peersman, and Straub (2010), using a smaller-scale model,

(essentially SW without capital), fix some of their parameters at calibrated values. In particular, they

fix the discount rate, the elasticity of labour supply, and the mark-ups in product and labour markets.

Our results provide more support for fixing the discount rate than the elasticity of labour supply,

which does show considerable movement across the sample as we previewed in the introduction.

Several other papers adopt this same general approach of making connections between time-varying

reduced form VAR dynamics and changes in structural DSGE parameters. Cogley and Sargent (2005)

build a 3 variable time-varying coefficient VAR to characterise shifts in macroeconomic dynamics.

Later, in their joint work with Primiceri, these authors seek to find structural explanations via a small

DSGE model.3 In a similar vein, Sargent and Surico (2011) interpret shifts in the money growth

- inflation correlation as accountable for by changes in the monetary policy rule in a smaller scale

sticky price RBC model. In Cogley, Sargent, and Surico (2012), changes in the correlation between

nominal interest rates and inflation, and inflation persistence are associated with shifts in the degree of

indexation of firms’ prices, shifts which come about because of changes in the monetary regime. Gali

and Gambetti (2009) estimate a time-varying VAR involving labour productivity and hours work, and

2We speculate that this is actually the case because HPS has to calibrate several parameters in a smaller model.
3Cogley, Primiceri, and Sargent (2010).
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uncover changes in the impulse response to identified technology shocks. The fixed-coefficient literature

to which these two papers address themselves was an argument about key parameters of the DSGE

model that should be taken as the data generation process. If hours worked did fall, as Gali’s striking

1999 paper found4, following a technology shock, then this suggested either that technology shocks were

not major contributors to the business cycle (indicating a small value for the parameter governing the

variance of these shocks) or, for example, that prices were sticky (whereupon the conventional result

in the flex price RBC model that hours rise after a technology shock is overturned). The time-varying

VAR results are therefore to be interpreted as alluding to potential changes in, eg, the volatility of

technology shocks and the degree of stickiness in prices. Finally, Boivin and Giannoni (2006) connect

two sub-sample VARs to corresponding estimated DSGE models that imply that monetary policy

became more stabilizing post-1980.

2.2.2 Estimating time-varying DSGE parameters directly

The second variety of work estimates changes in DSGE parameters directly. Within this category of

papers, there are two tactics. One is to embed time variation into the DSGE model itself. Another

is simply to estimate the DSGE model on different samples.

Fernandez-Villaverde and Rubio-Ramirez (2008) build a DSGE model that includes stochastic pro-

cesses for policy rule and price/wage stickiness parameters, over which agents in the model form ra-

tional expectations. They find abundant evidence of time variation. In one sense, our exercise is more

limited and less constructive: we do not offer a DSGE model with endogenous time variation. Instead

we undertake the narrower task of asking whether the coefficients in the fixed coefficient DSGE model

are really fixed. In another sense, our paper offers something new relative to Fernandez-Villaverde

and Rubio-Ramirez (2008). Freed from the computational burden of computing expectations over

the time variation in the DSGE parameters, we can look for time variation in all of the model’s (19)

parameters at the same time. By contrast, Fernandez-Villaverde and Rubio-Ramirez (2008) allow only

one parameter at a time to move.5

Cogley and Sbordone (2008) is another example of a DSGE model that embodies explicit time vari-

ation. They estimate a VAR with a time-varying trend inflation rate, imposing on the VAR cross

equation restrictions implied by a version of the New Keynesian model linearised around a time-

varying trend. This time variation allows the model to explain the persistence in inflation well despite

having no “backward-lookingness” in the form of indexation. This paper therefore makes an intimate

connection between a time-varying VAR and a DSGE model related to the one considered here, re-

interpreting the previous result that the data need indexation in the Phillips Curve as reflecting the

fact that the model omits time-varying trend inflation.

Justiniano and Primiceri (2008) estimate a DSGE model with time-varying volatilities of the structural

shocks in the model, and interpret the Great Moderation through the lens of this model. Born and

Pfeifer (2011) likewise estimate time variation in volatilities, with a particular focus on the changing

volatility of monetary and fiscal policies.

Liu, Waggoner, and Zha (2011) estimate a time-varying parameter DSGE model that includes ele-

ments of the substantive focus of Cogley and Sbordone (2008) and Justiniano and Primiceri (2008) by

4See Gali (1999).
5This was confirmed to us in email correspondence with Fernandez-Villaverde.
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allowing coefficients that define the inflation target and shock variances to follow Markov-switching

processes.

The second tactic for estimating time variation in DSGE coefficients is, as described above, to estimate

DSGE models on different samples. Smets and Wouters (2007) estimate their model over two sub-

samples of US data and conclude that structural DSGE parameters are stable apart from the variances

of the model shocks. Benati (2008) estimates a small New Keynesian model on various subsamples

corresponding to different monetary regimes. He finds that the indexation parameter, corresponding

to inflation persistence in the Phillips Curve, varies substantially between monetary regimes, and

therefore adduces that the reduced form property of inflation persistence derives, ultimately, not from

indexation, but from the behaviour of monetary policy. Canova (2009) estimates a simple New

Keynesian model on rolling samples using full information Bayesian methods. He finds evidence that

policy and private sector parameters change, and also evidence of instability in the variance of the

shocks. Canova and Ferroni (2011) conduct a similar exercise using the Smets and Wouters (2007)

model, augmented to allow for real balances to affect consumption and for money growth to enter the

policy rule. Giacomini and Rossi (2009) report rolling regression estimates of the Smets and Wouters

(2003) model in the course of developing a KLIC based method of conducting rolling comparisons of

the performance of competing models. Castelnuovo (2012) uses US data to estimate a rolling sample

version of the model of Andres, Lopez-Salido, and Valles (2006) which is a New Keynesian model

without capital, but with habits, indexation, and costs of adjusting portfolios to bring in a role for

money.

Also worth mentioning is the literature on detecting instabilities in DSGE model parameters. An

example is Inoue and Rossi (2011). They develop and test an algorithm for recursively identifying sets

of stable and unstable parameters in a DSGE model. They test for joint stability of all parameters,

and, if this rejects, eliminate the parameter with the lowest individual p-value (corresponding to a

test that this individual parameter is stable), and re-test for joint stability, proceeding like this until

that test does not reject. This approach identifies a set of stable parameters. They apply it to a

New Keynesian model, and find widespread evidence of parameter instability, including changes in

parameters defining nominal rigidities, habits and monetary policy parameters.

The subsample and rolling regression literature here is connected with our paper not just in terms of

its substantive focus (DSGE parameter change) but also methodologically. Appropriately specified

kernel functions can produce as special cases either rolling regressions or subsample estimates. Kernel

estimators therefore nest these alternatives. For example, a kernel function that weights equally all

observations within a window, and assigns no weight to those outside it, is a rolling regression. The

choice of the kernel as well as that of the bandwidth, which in the case of rolling regressions is the

size of the rolling window, are then questions of importance. The answer to the former depends on

the kind of structural change one is trying to model, which, unfortunately, is not known ex ante. One

might say that provided the structural change is sufficiently gradual, smooth kernels will be better

than rolling regression kernels. Note that flat, rolling regression kernels may not be optimal in the

case that we consider, where change in the DSGE parameters is derived from assuming persistent,

stochastic evolution of the reduced-form VAR parameters. Finally, an important advantage of our

methods relates to the fact that the theoretical derivations of Giraitis, Kapetanios, and Yates (2011)

suggest a clear choice for the bandwidth showing that a bandwidth equal to the square root of the

sample size has desirable properties.
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2.3 Diagnosing the causes of the Great Moderation

One of the focal points of the literature on structural change in macroeconomic dynamics has been to

try to diagnose the causes of the Great Moderation - crudely, the set of phenomena which includes the

rise and fall of the mean, variance and persistence of inflation and the fall in the volatility of output.

Many of the papers mentioned above seek to quantify the contribution of shock volatilities versus

coefficient change, and to identify those factors directly attributable to policy and those that are not.

Two prominent, early papers were McConnell and Perez-Quiros (2000) and Stock and Watson (2002).

A survey of some of the subsequent literature can be found in Velde (2004).

Our paper makes a limited contribution to this literature by quantifying changes in monetary policy,

but only in so far as one is prepared to believe the auxiliary assumption that the data are generated

by a time-varying parameter SW model. It is not our intention to suggest this as the most plausible

alternative to the fixed-coefficient SW model, but simply to present circumstantial evidence that this

fixed coefficient model is mis-specified. However, with this caveat, as already noted, we find that there

is not such a dramatic difference between pre and post-Volcker monetary policy rules as sometimes

reported in other papers. (See, for example, Clarida, Gal, and Gertler (2000), and, for a comment on

robustness to identification issues, Mavroeidis (2010)). We also find no evidence that monetary policy

led to indeterminacy at any time in the sample. As a bi-product of our estimation we uncover time

variation in the volatility of shocks hitting the economy. There is some evidence that the volatility of

fiscal policy shocks is lower in the final 1/3 of the sample, corroborating the ‘better fiscal policy’ view

of the Great Moderation. However, the volatility and persistence of monetary policy shocks is fairly

constant over the sample period, confounding the ‘better monetary policy’ view.

3 Econometric framework for estimating the time-varying VAR and

DSGE parameters

In this section we set out our econometric strategy, and explain the components of the analytical

toolkit used to derive the time-varying DSGE coefficient estimates. Before setting out the details, we

briefly sketch the approach.

The first step involves using a kernel estimator to produce estimates of the time-varying VAR and the

associated paths of instantaneous fixed-coefficient VARs. The second step is to identify a ‘monetary

policy shock’ within each of these instantaneous VARs by applying a recursive identification procedure

based on the Choleski factor of the variance-covariance matrix of the reduced form VAR residuals. We

compute a time series of the associated impulse response functions (IRF) to these shocks, and, using

bootstrapping, associated distributions at each point. We plot these impulse response functions for two

reasons. Some readers will be convinced by the recursive identification procedure. Others will not, but

nevertheless the IRFs constitute convenient binding functions to be used in our final step, an indirect

inference procedure for estimating the time-varying DSGE parameters. Our estimation algorithm

proceeds by computing the distance between model and data versions of the impulse responses, and

finding the DSGE parameter vector that minimises this distance, a procedure which we carry out for

each quarter of our 1955-2010 sample period. The next sections serve to clarify notation and make

the paper self contained for readers not familiar with all the above components.
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3.1 Time-Varying Estimation of Reduced Form VAR Models

In this subsection we discuss the time-varying estimation of the VAR model. The material is a self-

contained summary of the theory in Giraitis, Kapetanios, and Yates (2012). More details and proofs

can be found in that paper. We start by considering the multivariate dynamic autoregressive model

given by

yt = αt + Ψt−1yt−1 + ut, t = 1, 2, · · · , n, (3.1)

where yt = (y1t, ..., ymt)
′, the noise ut = (u1t, ..., umt)

′ and αt = (α1t, ..., αmt)
′ are m−dimensional

vectors, and Ψt = [ψt,ij ] is m ×m matrix of (random) coefficient processes while Eutu
′
s = 0, t 6= s.

To assure that this dynamic model generates a bounded process yt and to enable estimation of the

model, it is important to bound the eigenvalues of Ψt to lie in the interval (−1, 1). There are a variety

of ways to implement such a bounding. This restriction ensures that the spectral norm ||Ψt||sp or the

maximum absolute eigenvalue of Ψt is bounded above by one. We assume the following.

Assumption 3.1 The random coefficients Ψt are such that ||Ψt||sp ≤ r < 1, t ≥ 0 for some r < 1.

Moreover, as h→∞, h = o(t), t→∞,

sup
s:|s−t|≤h

||Ψt −Ψs||2sp = Op
(
h/t
)
.

Note that this assumption is not imposed in estimation, but simply to allow us to establish theoretical

properties of the kernel. Note too that this assumption very common in empirical macro, invoked, we

suggest, by RBC/DSGE researchers, in ordder to render their research questions meaningful and/or

simply implementable.

Next, we allow for a martingale difference noise given by

ut = Ht−1εt, E[ut|Ft−1] = 0

with respect to some filtration Ft, where Ht = {ht,ij} is an m × m time-varying random volatility

process, and εt is a vector-valued of standartized i.i.d. noise, Eεt = 0, Eεtε
′
t = I. Denote by

Σt = HtH
′
t = E[utu

′
t|Ft−1] the conditional variance-covariance matrix. We assume the following.

Assumption 3.2 (i) {Ht}, {Ψt}, {αt} and {εt} are Ft-measurable; Eε4
i1 < ∞ and Ey4

i0 < ∞ for

i = 1, · · · ,m.

(ii) For t ≥ 0, Eh4
t,ij ≤ C; for 1 ≤ k ≤ t/2, E||Ht −Ht+k||2sp ≤ Ck/t.

(iii) ||H−1
t ||sp = Op(1) as t→∞.

We decompose yt = µt + (yt − µt) into a persistent attractor µt, and a VAR(1) process with no

intercept:

yt − µt = Ψt−1(yt−1 − µt−1) + ut, t ≥ 1

where µt =
∑t−1

k=0 Πt,kαt−k, Πt,0 := 1, Πt,j := Ψt−1 · · ·Ψt−j , 1 ≤ j ≤ t. Although the attractor µt

can be estimated, in general, it cannot be interpreted as the mean Eyt. In Giraitis, Kapetanios, and
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Yates (2012) it is shown that

yt = µt +
∑t−1

k=0 Ψk
tut−k + op(1), t→∞. (3.2)

We estimate µt, Ψt and αt by

µ̂t ≡ ȳt =

∑n
j=1 ktjyj∑n
j=1 ktj

, Ψ̂t :=
( n∑
j=1

ktjỹt,j−1ỹ
′
t,j−1

)−1
n∑
j=1

ktjỹt,jỹ
′
t,j−1, α̂t = ȳt − Ψ̂tȳt,

where ỹt,j := yj − ȳt, ktj := K
(
(t − j)/Hψ

)
and K(x) ≥ 0, x ∈ R is a continuous bounded function

and Hψ is a bandwidth parameter such that Hψ →∞, Hψ = o(n/ log n). We assume that

K(x) ≤ C exp(−cx2), |K̇(x)| ≤ C(1 + x2)−1, x ≥ 0, ∃C > 0, c > 0. (3.3)

K is not required to be an even function. It is a non-negative function with a bounded derivative

K̇(x). For example,

K(x) = (1/2)I(|x| ≤ 1), flat kernel,

K(x) = (3/4)(1− x2)I(|x| ≤ 1), Epanechnikov kernel,

K(x) = (1/
√

2π)e−x
2/2, Gaussian kernel.

To estimate Σt = HtH
′
t, we use the kernel estimate

Σ̂t =
( n∑
j=1

ltj
)−1

n∑
j=1

ltjûjû
′
j , ltj := L(

t− j
Hh

),

based on residuals ûj = yj − Ψ̂tỹt,j−1, where Hh → ∞, Hh = o(n/ log n) is another bandwidth

parameter, and the kernel function L obeys the same restrictions as K. Below we set H̄ = H log1/2H.

Let ||A|| = (
∑

i,j a
2
ij)

1/2 denote the Euclidean norm of a matrix A = {aij}.

The following assumption describes a class of permissible intercepts αt.

Assumption 3.3 αt = (α1t, · · · , αmt)′ is Ft measurable, maxtEα
4
it < ∞, and E||αt − αt+k||2 ≤

Ck/t, t ≥ 1, 1 ≤ k < t/2.

The next theorem establishes consistency and convergence rates for the estimates, see Giraitis, Kapetan-

ios, and Yates (2012).

Theorem 3.1 Let y1, · · · ,yn be a sample of VAR(1) model with an intercept, αt, and t = [nτ ], where

0 < τ < 1 is fixed. Assume that K and L satisfy (3.3), and Assumptions 3.1- 3.3 hold. Then, with

κn := (H̄ψ/n)1/2 +H
−1/2
ψ , for H̄ψ = o(n),

µ̂t − µt = Op(κn), Ψ̂t −Ψt = Op(κn), α̂t −αt = Op(κn), Σ̂t −Σt = Op
(
κn + (H̄h/n)1/2 +H

−1/2
h

)
.

It is clear that the above theoretical results suggest the use of Hψ = Hh = n1/2 as the optimal setting

for the bandwidth since this choice provides the fastest rate of convergence. We use this choice for our

empirical work. The ability to have a clear choice for this tuning parameter is crucial and provides
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further motivation for the use of kernel estimation in this context.

In setting the model for the VAR parameter Ψt = {ψij,t}, one can use the restriction that mirrors the

bounding of Giraitis, Kapetanios, and Yates (2011) for univariate processes:

ψij,t = rij
aij,t

max0≤s≤t |aij,s|
, t ≥ 1, i, j = 1, · · · ,m,

for some rij > 0, ri1 + · · ·+rim ≤ r < 1 and some persistent processes aij,t. It satisfies the requirement

||Ψt|| ≤ r < 1 of Assumption 3.1. The popular empirical chose of aij,t in macroeconomic literature is

a random walk

aij,t = v1 + · · ·+ vt, vt ∼ IID(0, σ2).

A typical example of an intercept αt = {αi,t} satisfying Assumption 3.3 is

αi,t = t−1/2(vi1 + · · ·+ vit), t ≥ 1, i = 1, · · · ,m,

where vit’s are stationary zero mean r.v.’s such that
∑∞

k≥0 |Evikvi0| < ∞, Ev4
i1 < ∞. A typical

example of a time-varying random volatility process Ht = {hij,t} satisfying Assumption 3.2(ii) is

hij,t =
∣∣t−1/2(vij,1 + · · ·+ vij,t)

∣∣+ cij , t ≥ 1, i, j = 1, · · · ,m,

where the stationary process {vij,t} has the same properties as {vit}, and cij ≥ 0 are non-random.

The above articulates how we estimate the time-varying VAR, and refers to our previous work on set-

ting and estimation of VAR models which coefficients follow stochastic processes. It is worth noting

that the kernel methods deliver consistent estimates also in the case a VAR model with deterministic

coefficients. For the purposes of this paper it seems attractive to remain agnostic about what kind

of process is driving parameter change in the VAR. Substantial Monte Carlo studies in GKY papers

referenced above and Kapetanios and Yates (2010) show that the theoretical properties of VAR es-

timates obtained in both the stochastic and deterministic coefficient case translate into good small

sample properties.

3.2 Moment selection for the indirect inference procedure

Given an estimated reduced form impulse response function researchers frequently wish to provide a

structural interpretation to the VAR. The aim in such cases is to factorise the conditional covariance

matrix Σt of the m-dimensional reduced form error ut, at time t, as

Σt = P tDtP
′
t = BtB

′
t, Bt = P tD

1/2
t

where P t is a column-matrix of the eigenvectors and Dt is a diagonal matrix of the eigenvalues of Σt.

Such a factorisation is not unique since for any nonsingular orthogonal matrix Qt,

Σt = BtQtQ
′
tB
′
t.

As is well known, n(n− 1)/2 restrictions are sufficient to fully specify a unique Qt, and a number of

schemes deriving from insights from theoretical models have been proposed to specify these restrictions.
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A popular sign restriction approach, rather than seeking to identify a unique Qt, aims to identify a

set of Qt’s that satisfy particular sign restrictions for the impulse responses which are computed as:

R(k, t) = Ψk
tBtQt. (3.4)

However, this approach poses serious problems for inference. While Bayesian techniques can be used

to construct confidence intervals, frequentist inference is not straightforward. The only available

method seems to be that of Granziera, Lee, Moon, and Schorfheide (2013), which is prohibitively

computationally intensive for the estimation of our time-varying large VAR model. As a result, we use

a Choleski identification of Bt, that yields a lower diagonal Bt (which involves n(n−1)/2 restrictions).

Such Bt is unique and we will denote it by Σ
1/2
t . In addition, the policy rate is ordered last in our

VAR model. In some contexts, one can identify the monetary policy shock in this way, and indeed this

scheme has been used in a large number of studies. Indicatively, we note the work of Rotemberg and

Woodford (1998), Christiano, Eichenbaum, and Evans (2005), Christiano, Eichenbaum, and Evans

(2005), Altig, Christiano, Eichenbaum, and Linde (2011) and Haan and Sterk (2011). In our context,

one cannot identify a monetary policy shock in this way as the restrictions implied are not consistent

with the DSGE model (explained below). So the factorisation for us serves two purposes. For those

interested in contexts where this shock has a genuine structural interpretation, the time variation we

compute will be interesting in its own right. For our ultimate purpose of estimating time variation in

the SW model, the factorisation produces a moment of the data, a binding function, as an input to

an indirect inference procedure that we describe below.

3.3 Minimum Distance Estimation of the DSGE parameters by indirect inference

In this section, we describe formally the minimum distance estimation (MDE) procedure we use to

map from the estimates of time-varying structural impulse response functions to the set of DSGE

parameters, which will be familiar to readers from the work of Rotemberg and Woodford (1998),

Christiano, Eichenbaum, and Evans (2005) and many others. A detailed account of the procedure and

results can be found in Theodoridis (2011).

We depart from the above studies by minimising the distance between the identified VAR impulse

responses in (3.4) and their counterparts implied by the DSGE model, instead of directly matching the

responses between the structural SW model and the VAR model. The reason of taking that route is due

to the fact that the Choleski identification scheme discussed earlier (or any other point identification

scheme for the SW model and a monetary policy shock) is not consistent with the structural SW model,

discussed below. More specifically, all the endogenous variables in the structural model will respond

instantaneously to changes to the non-systematic part of the policy rule. This type of inference is

known as ‘indirect inference’ and is commonly used when the objective function of the estimated model

does not have closed form solution (for instance, see Smith (1993), Gourieroux, Monfort, and Renault

(1993), Gourieroux and Monfort (1995)). In a Bayesian framework, Del Negro and Schorfheide (2004)

and Filippeli, Harrison, and Theodoridis (2013) minimise the distance between the estimates of VAR

parameters and the VAR parameter vector implied by the DSGE model to derive the quasi-Bayesian

posterior distribution of the structural parameter vector.

There are other ways we could have attempted to map the time-varying VAR estimation results to

DSGE models. One is to identify shocks using sign restrictions, but this has disadvantages as discussed
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in the previous section: its impulse responses are only set identified, which causes difficulties with

establishing consistency of the minimum distance estimates and in computing measures of uncertainty

surrounding the DSGE parameter estimates. Another alternative would be to estimate a model

similar to that of CEE with which the recursively identified monetary policy shock is consistent. This

would enable estimation, via ‘direct inference’ of a time-varying version of CEE or Rotemberg and

Woodford (1998). However, we opt to estimate the SW model given how much work was subsequently

carried out using this model, and the connection it allows us to make with the literature that has used

SW and similar models to assess the contribution of its many shocks to business cycle fluctuations.

This section illustrates how we estimate the DSGE model using ‘indirect inference’. The starting point

of our analysis is writing down the solution of the linearised DSGE model, like the one described in

Section A.2, in the following state-space format

yt = Ξ (θ)xt, (3.5)

xt = Φ(θ)xt−1 + Λ(θ)ωt, (3.6)

where equation (3.6) describes the evolution of the k-dimensional state vector xt, and equation (3.5)

relates the m-dimensional vector of the observable variables yt with the unobserved states of the

economy, xt. ωt denotes the k-dimensional vector of the structural errors that are standardised i.i.d.

vector variables, The elements of the matrices Ξ (θ), Φ(θ) and Λ(θ) are (non-linear) known functions

of the structural parameter vector θ taking values in a compact subset Θ of Rk′ , and ||Φ(θ)||sp ≤ r <
for all θ.

First, we fit to the sample y1, · · · ,yn a time-varying VAR(1) model (3.1). Our objective is to estimate

the parameters Ψt and Σt at period t. We assume that the data is demeaned by ȳt. According to

(3.1), these parameters can be estimated by the OLS estimates:

Ψ̂t = ρ̂−1
Y,t;0ρ̂Y,t;1, Σ̂t = ρ̂Y,t;0 − ρ̂Y,t;1ρ̂

−1
Y,t;0ρ̂

′
Y,t;1

where ρ̂Y,t;0 = A−1
n,t

∑n
j=2 ktjyjy

′
j and ρ̂Y,t;1 = A−1

n,t

∑n
j=2 ktjyjy

′
j−1, An,t :=

∑n
j=2 ktj are kernel ver-

sions of sample variance and sample correlation at lag 1 based on yj ’s. Together with (3.2), this

implies

yt =
∑t−1

j=0R(j, t)εt−j + op(1), R(j, t) := Ψj
tΣ

1/2
t , (3.7)

yt =
∑t−1

j=0 R̂(j, t)εt−j + op(1), R̂(j, t) := Ψ̂
j

tΣ̂
1/2

t

where the Σ
1/2
t , Σ̂

1/2

t are square roots of Σt and Σ̂t obtained using Choleski identification.

Using the alternative parametric expression of yj summarised by the DSGE equations (3.5) and (3.6),

we express the sample moments ρ̂Y,t;1 and ρ̂Y,t;0 of observables yj as functions of the structural

parameter vector θ plus an asymptotically negligible error, by relating them to the sample covariance
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ρ̂x,t;0 of the latent variables xj
6 :

vec
[
ρ̂x,t;0

]
= (Ik2 −Φ (θ)⊗Φ (θ))−1 vec

[
Λ(θ)Λ(θ)′

]
+ op(1), (3.8)

ρ̂Y,t;0(θ) = Ξ (θ) ρ̂x,t;0(θ)Ξ (θ)′ + op(1),

ρ̂Y,t;1(θ) = Ξ (θ) Φ(θ)ρ̂x,t;0(θ)Ξ (θ)′ + op(1).

Property (3.8), vec
[
ρ̂x,t;0

]
=: vec

[
ρ̃x,t;0

]
+ op(1), allows the construction of a deterministic function

ρ̃x,t;0(θ) such that ρ̂x,t;0(θ) = ρ̃x,t;0(θ) + op(1). The above relations allow us to obtain a parametric

version of VAR(1) parameters Ψt and Σt as known functions of θ:

Ψ (θ) := ρ̄Y,t;1(θ)ρ̄−1
Y,t;0(θ), (3.9)

Σ (θ) := ρ̄Y,t;0(θ)− ρ̄Y,t;1(θ)ρ̄−1
Y,t;0(θ)ρ̄Y,t;1(θ)′,

where ρ̄Y,t;0(θ) := Ξ (θ) ρ̃x,t;0(θ)Ξ (θ)′ and ρ̄Y,t;1(θ) := Ξ (θ) Φ(θ)ρ̃x,t;0(θ)Ξ (θ)′ are known determinis-

tic functions of θ. This implies alternative parametric expressions for impulse responses (3.7):

R(j, t, θ) = Ψj (θ) Σ1/2 (θ) , j ≥ 0,

where the matrix Σ1/2 (θ) is the square root of Σ (θ) obtained using Choleski identification.

Before proceeding to explain the minimisation procedure for the extraction θ, it is important to keep

in mind that expressions (3.9) can only exist if the dimension of the vector of the observables yt

coincides with the number of the structural shocks εt, otherwise the system is singular.

By Theorem 3.1 and (3.7) we have that for any fixed j ≥ 0 and t ≥ 1, as n→∞,

||R̂(j, t)−R(j, t)||sp = op(1). (3.10)

For a given t, we estimate the structural parameter θt by θ̂t, using the following minimization proce-

dure, based on J ≥ 1 impulse responses and some positive definite matrix W. We assume for any t,

||R(j, t, θ)||sp is bounded in j and θ, and the function

Sn,t(θ) :=

J∑
j=0

||
(
R(j, t, θ)−R(j, t)

)′W(R(j, t, θ)−R(j, t)
)
||sp

is bounded and continuous in θ and achieves its unique minimum at some θt. We define

θ̂t := arg minθŜn,t(θ), Ŝn,t(θ) :=

J∑
j=0

||
(
R(j, t, θ)− R̂(j, t)

)′W(R(j, t, θ)− R̂(j, t)
)
||sp.

This, together with (3.10), by standard arguments (see, e.g., Theorem 2.1 of Newey and McFadden

(1994)), implies

||θ̂t − θt||
p→ 0.

Our MDE procedure and the assumptions underpinning its consistency are similar to those used in

6The exact formulas can be found in the appendix of Del Negro and Schorfheide (2004).
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fixed coefficient VAR and DSGE analyses, with the exception that it is carried out for each of the

‘instantaneous VARs’ which the kernel estimator produces. This procedure mirrors what Hofmann,

Peersman, and Straub (2010) did, except that they were: (i) using VAR and DSGE models of smaller

dimension, (ii) using more familiar Bayesian methods to estimate the time-varying VAR, (iii) calibrat-

ing some of the parameters, and (iv) considering just a subset of the instantaneous VARs articulated

by their time-varying VAR estimation.

The standard costs and benefits of using MDE or related procedures also apply in our time-varying

context. This concludes the theoretical discussion of our estimation method.

Of course many choices have to be made to operationalise the above approach. These include the

choice of the variables in the VAR model, the identification restrictions and the DSGE model used.

These will be discussed in detail in the next section.

4 Empirical Results

We use the 7 variable quarterly dataset for the US compiled by SW, comprising: quarterly growth in

GDP, CPI inflation, hours worked, quarterly growth in investment, quarterly growth in consumption,

quarterly growth in real wages and the Fed Funds rate. The dataset in the 2007 AER depository is

updated to 2010Q2. Data are detrended as in SW; not also that the VAR has a constant which can

potentially be time-varying.

4.1 Fixed Parameter DSGE Model Estimation

A natural starting point is to estimate the DSGE model assuming that its coefficients are constant

(fixed). Our fixed coefficient estimates of DSGE parameter, obtained using indirect inference from

the fixed coefficient VAR estimates, provide a bridge between time-varying estimates, the estimate of

DSGE model by SW and others based on the use of Bayesian methods. It is important to show that

our methods generates reasonable estimates in the fixed-coefficient case. Fixed coefficient estimation

also provides a benchmark allowing the evaluation of the importance of the presence of the time

variation we uncover. There is also an important practical reason for doing this, since computational

burden of performing the time-varying coefficient estimation is considerable.

Our fixed-coefficient DSGE estimates are derived using minimum distance methods from the fixed-

coefficient VAR estimates. Following the work of SW, we set the lag length of the VAR model equal

to three. Chart 3 plots the medians of simulated impulse responses at lags 1 to 12. It includes the

pointwise VAR median (black line), the range of VAR impulse responses between the 16th and 84th

percentiles computed using a bootstrap procedure,7 and medians of impulse responses obtains using

minimum distance methods with three standard weighting matrices.

With the exception of inflation, all the responses of the observable variables to a policy shock appear

to follow standard patterns discussed in the literature. Briefly, as the policy rate increases, house-

holds substitute current with future consumption, Tobin’s Q decreases and induces firms to cut back

7In particular, we (1) estimate the VAR; (2) generate data using estimates from 1., sampling with replacement from
the actual time series of residuals computed in 1.; (3) re-estimate the VAR on the simulated data; (4) repeat 2.-3. 5000
times. The distributions (the median and percentiles) of the impulse responses are computed pointwise for each horizon.
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investment. Lower demand is translated to weak labour demand and this causes wage inflation to

decrease. In contrast to the theory, where, after an increase in the interest rates, inflation falls due

to weak demand/marginal cost, this only takes places in the data 1.5 years after the occurrence of

the shock. This counterfactual phenomenon, known as ‘price puzzle’, was first noted by Sims (1992),

and dubbed the ‘price puzzle’ by Eichenbaum in his comment on Sims (1992). If the Choleski factor

of the reduced form VAR residuals is to be used to identify formally a policy shock, the price puzzle

may be problematic. But for our purposes, Choleski identification is simply a convenient tool for our

indirect inference procedure.

We estimate the structural DSGE model by minimum distance estimation with three different choices

of the weighting matrices W:8

• Optimal W (blue dashed line): It is the inverse of the variance-covariance of the entire impulse

response matrix. Although it delivers the estimates with the smallest standard errors in the

MDE class, it is not frequently used in the literature of estimating DSGE models. Altonji and

Segal (1996) and Clark (1996) show that this ’optimal’ weighting scheme can induce biases in

small samples.

• Diagonal W (red dashed-dotted line): It contains the diagonal matrix of the Optimal weight-

ing matrix. It is frequently used in the studies of estimating DSGE models (see Christiano,

Eichenbaum, and Evans (2005), Altig, Christiano, Eichenbaum, and Linde (2011)).

• Identity W (red solid-circle line): MD estimate with identity matrix as argued by Jorda (2005)

and Jorda and Kozicki (2011) has very good properties in small samples.

Chart 3 shows the medians of impulse responses implied by DSGE model estimated using MD es-

timates for all three W. The impulse responses implied by structural model fit the VAR responses

remarkably well independently of the choice of the weighting matrix.9 In simulations, the estimates of

the structural model for each time period as well as the assessment of their uncertainty are obtained

through a large number of numerical minimisations, which require significant computational effort

and cost. To speed the process up the identity weighting matrix makes an obvious choice. Chart 3

suggests that this choice is acceptable from the point of view of the fixed coefficient exercise.

Table 1 reports the estimated DSGE parameter values (at the median) that correspond to the ‘Identity’

weighting matrix. These estimates are very similar to those reported by Smets and Wouters (2007) and

Justiniano, Primiceri, and Tambalotti (2010), even though we have employed a different estimation

procedure.

4.2 Time-varying parameter DSGE model estimation

4.2.1 Time-varying impulse response functions

The time varying DSGE parameters are estimated by the minimum distance method from the time-

varying impulse response functions to the ‘monetary policy shock’, in turn derived from the estimated

8In the estimation exercise we have use 100 randomly generated starting values and we report the estimates that
correspond to lowest value of the objective function.

9Theodoridis and Zanetti (2013) find that the estimates of the structural model are robust to the choice of the
weighting matrix. However, they only consider the ‘Diagonal’ and ‘Identity’ matrices.
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time-varying VAR. The VAR model is estimated using Hψ = Hh = n1/2, as discussed previously,

and the Gaussian kernel. Charts 1-2 depict the evolution of these impulse responses over time. All

responses show a great deal of time variation. There are large changes in magnitude, which are no

doubt the result of a combination of changes in the size of the shock (as demonstrated by the change

in the impact response of interest rates), suggesting that the reduced form conditional variance-

covariance matrix of residuals is clearly time-varying. There are also clear qualitative changes in the

impulse responses. Many of them change sign, or show very different degrees of persistence across

the sample period. For example, the price puzzle that characterises the variation of fixed-coefficient

responses, is shown to apply only for the years 1970-1990. The responses of real variables to this

shock also move considerably, such as, e.g., the response of output growth and hours.

These time-varying IRFs implied by DGSE model may be of interest in themselves, for those prepared

to interpret the considered identification scheme as successfully recovering a monetary policy shock,

but also as comparators with the prior results on IRFs based on fixed-coefficient VAR estimation, and

on the time-varying VAR monetary policy shock identification in smaller systems. For the purposes of

this paper, the time variation is the necessary ingredient to give time variation in the DSGE estimates,

to which we now turn.

4.2.2 Time-varying DSGE estimates

Our benchmark estimation results are presented in Figures 4-7. The charts plot the median and 68%

confidence intervals (computational details are given in the appendix). The fixed coefficient estimates

are marked as a pink solid line. The SW estimates produced from their full information Bayesian

Maximum Likelihood procedure, which we report as a comparison, are marked as blue dashed lines.

They very often are different from the average of our “time-varying”estimates. This is to be expected.

Our estimates differ not only because they are sub-sample estimates, but because SW used Bayesian

techniques with informative priors.

Nominal rigidities. We estimate very pronounced changes in the parameters defining nominal wage

and price rigidity. ξw, the ‘Calvo parameter’ for wages, which encodes the probability of the labour

unions not re-setting wages, fluctuates between 0.7 and almost 1 (the boundary value is set to be

fractionally below 1) between 1955 and 1995, but then varies over a much wider range in the latter

part of the ‘Great Moderation’ years, averaging lower during this period too, and reaching a trough

of under 0.4. Crudely put, the economy looks more like a flexible wage economy in the latter part of

the sample. The analogous parameter for the product market, ξp also fluctuates through a similarly

wide range (0.5-1), but shows no secular trend. Fernandez-Villaverde and Rubio-Ramirez (2008) and

Hofmann, Peersman, and Straub (2010) also found substantial time variation in these parameters.

In their case, there was evidence that this variation was correlated with inflation, suggesting that

the time-dependent Calvo model was a reduced form for some underlying state-dependent model of

prices in which the frequency of price changes is inversely related to inflation itself: however the time

variation in ξw and ξp that we find does not display this correlation.

The indexation parameter is perhaps the most controversial aspect of the DSGE model: micro evidence

on prices strongly suggests that there is no indexation; yet indexation in prices and wages greatly

improves the fit of the DSGE model to macro time series. ip records the coefficient in the one argument
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linear rule that firms use to multiply with last period’s inflation to index prices. We estimate that

this begins in 1955 at almost 1, fluctuating thereafter between 0-0.95. Benati (2008) showed in his

fixed-coefficient sub-sample estimates that this coefficient varies with the monetary regime. If one

were to ignore the very high values of ip recorded in the latter part of the 2000s, our results might

be consistent with the work of Benati (2008), since the highest previous values for ip are associated

with the ‘Great Inflation’ years, but the path for ip is clearly not so neatly correlated with regimes as

suggested by Benati’s work. Our estimates reveal that there is also clearly a lot of instability within

institutionally-defined regimes. For example, it is not the case that indexation-induced persistence is

greater pre- than post-Volcker. The equivalent parameter for wages, iw fluctuates in a similarly wide

range (0-0.9), following a similar path to ip until the late 1980s, but differing thereafter.

Overall, we conclude that there are very large fluctuations in all the parameters defining nominal

rigidities in the model, strong circumstantial evidence that this block of the model is not tightly

micro-founded, as the RBC founders would have thought. These fluctuations are important for

policy: it is well known that the details of optimal monetary policy depend a lot on the nature of

nominal rigidities. Examples include: the stickier are wages relative to prices, the more weight the

authorities should place on nominal wage stabilisation relative to price stabilisation (Erceg, Henderson,

and Levin (2000)); the presence of indexation implies the authorities should stabilise a quasi-difference

of inflation involving the indexation parameter itself (Woodford (2003)).

Real economy parameters. There are several points worth noting here. First, on h, the parameter

that encodes habits in consumption, we note that it is estimated at about 0.8 in 1955 and fluctuates

between this value and about 0.6 until the early 1990s; thereafter it becomes even more volatile,

taking values between just over 0.5 and 0.9. These are very wide ranges for the habits parameter, and

will have dramatic effects on the overall memory of the DSGE model. One may speculate that the

marked fall at the end of the sample helps the model explain the fall in consumption growth following

the onset of the financial crisis. Several other parameters fluctuate in relatively large ranges: the

inverse intertemporal elasticity of substitution σc (1.1-2); the inverse Frisch elasticity of labour supply

σL (0-4); the capital share α (0.15-0.35); the parameter governing the costs of adjusting investment

φ (2-15) which rises at the end of the sample to break the link between investment growth and the

model’s Tobin’s Q measure, because the model otherwise has a hard time explaining the early 2000’s

boom in investment and the subsequent slump after the crisis.

Interestingly, the discount rate, β, is found to be relatively constant. We draw comfort from this.

There is a wide body of evidence, macro/finance and micro/experimental, that the discount rate is

close to but less than 1. So this is probably the most micro-founded parameter of all in the DSGE

model. There are some periods with large numerical changes, but these are also periods when the

estimate is most uncertain (as can be seen from the wide pink bands at these points). We take our

flat β to strengthen the case for interpreting our results as indicating something useful about the

DSGE model’s failings. If everything were moving, including parameters that are relatively solidly

evidenced outside the model, we could be more sceptical that this estimated variation was just noise,

or indicative of poor identification. Note that the flat β confirms ex post that the data would, in some

sense, support the fixing of β in Hofmann, Peersman, and Straub (2010).
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Monetary policy parameters. Monetary policy is assumed to have been characterised by an

interest rate rule such that the interest rate responds to its own lag, a term in the inflation rate, the

output gap and the change in the output gap (sometimes known as the ‘speed limit’). We estimate

quite large ranges that bracket the minimum and maximum values of these parameters in our sample

periods: the responsiveness of interest rates to inflation, rπ (1.8-3); the response to the output gap,

ry (0-0.5); the speed limit term r∆y (0-0.5); the coefficient on lagged interest rates ρ (0.5-0.85).

These are large enough to generate meaningful welfare differences in the monetary policies, other

things equal, and large enough to be statistically significant (which we judge informally by comparing

the size of the movements with the confidence band around any of the point estimates). However,

the picture that emerges does not corroborate the received view of monetary policy changes. The

crude characterisation of the post WW2 period monetary regimes is that there was a clear difference

between the pre- and post- Volcker periods (i.e. pre- and post- 1984). Before, monetary policy

was insufficiently responsive to inflation, perhaps to such an extent as to generate indeterminacy.

After, monetary policy was more responsive to inflation and correspondingly less responsive to real

fluctuations and less autocorrelated. This picture does not emerge from our time-varying estimates.

The responsiveness of inflation, if anything, is lower in the final 15 years of the sample than before.

If there is a pattern to be discerned in the path of the coefficient recording the responsiveness of

interest rates to the output gap, it is that it peaks prior to 1975 and falls swiftly and steadily after

that (i.e. some time before the arrival of Volcker). As for the responsiveness of interest rates to

the change in the output gap, this tends to rise through the latter part of the sample, not fall.

There is no clear pattern in the coefficient on lagged interest rates. Our estimation algorithm rejects

parameter combinations for which the model is indeterminate, so we are never going to produce such

values as estimates. But there is no sign of monetary policy coefficients being pushed to the boundary.

Provided the objective function is not very badly behaved around the determinacy boundary, evidence

that our estimates are not pushed towards the boundary is evidence against the hypothesis that policy

generates indeterminacy.

Parameters governing shock processes The paths of estimated parameters governing the shock

processes exhibit time variation. We should expect this, as, broadly, to match the dynamics in the

data, a DSGE model offers a choice between the variance and persistence of shocks on the one hand,

and the persistence encoded in the internal propagation of the DSGE model on the other. As we

have recorded quite dramatic changes in certain important components of the internal propagation,

(habits, indexation, investment adjustment costs, for example), we might expect, other things being

equal, to record correspondingly large changes in the shock processes.

The movements in these parameters are generally much smaller relative to the typical confidence

band around any single period’s estimate; and these movements are largest when the estimate is itself

most certain. Such movements seem more plausibly explained by poor identification than genuinely

meaningful evidence of structural change.

Interesting observations here include the fact that the volatility of the government spending shock

σg is lower in the final 20 years of the sample than earlier (consistent with a ‘better fiscal policy’

interpretation of the Great Moderation) and the fact that the volatility and persistence of monetary

policy shocks is relatively constant throughout the sample, confounding the hypothesis that Great

Moderation was the result of more effective monetary policy.
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5 Conclusions

In this paper, we have discussed a minimum distance estimation approach for time-varying DSGE

models based on estimates of time-varying VAR impulse responses on the dataset, that SW used to

estimate their medium scale DSGE model. Estimation of stochastic time-varying coefficient models

using MCMC algorithms is currently impractical, given the need to impose stationarity condition on

VARs at each time period. In order to proceed, to estimate instantaneous VAR models, we have

deployed a kernel estimation method, explained in prior work, (Kapetanios and Yates (2011), and

Giraitis, Kapetanios, and Yates (2011)) that is known to deliver consistent estimates of the VAR

parameters, and is capable of handling large dimension systems.

Based on the estimated time-varying VARs, we have produced time-varying impulse responses to

recursively identified monetary policy shocks. These impulse responses display very considerable time

variation through the sample period.

Time variation in parameters of VAR generates time variation in the estimates of DSGE parameters

produced from the VAR impulse responses. We conduct this estimation using indirect inference,

treating the Choleski identified impulse responses as convenient binding functions that we match

using a minimum distance procedure.

In this sense, we work out what time variation in macro-dynamics encoded within the time-varying

VAR implies for time variation in DSGE parameter estimates. Such an exercise is interesting, be-

cause the considerable time variation we uncover in DSGE parameter estimates serves to generate

circumstantial evidence of mis-specification in the DSGE model.

Not surprisingly, the considerable changes manifesting in VAR macroeconomic dynamics generate

quite dramatic changes in some of the parameters of the DSGE model that have come under most

scrutiny. Notable are fluctuations in the parameters governing indexation in prices and wages (across

the full allowable range of parameter values), Calvo reset probabilities for prices and wages, habits

and investment adjustment costs. Other parameters are more stable, such as the discount rate,

perhaps intuitively so, since this is more securely microfounded. Monetary policy parameters show

evidence of time variation, but not in a way that corroborates explanations of the Great Inflation and

subsequent Moderation. Parameters governing the shock processes do vary, but the movements tend

to be smaller, and to occur when the parameters are most uncertain.

The broad thrust of our findings, that many of the DSGE model parameters are substantially time-

varying, confirm results of previous exercises in Fernandez-Villaverde and Rubio-Ramirez (2008) and

Hofmann, Peersman, and Straub (2010). This time variation amounts to strong circumstantial

evidence that the criticisms of this DSGE model voiced from those outside the DSGE community

(see, for example, Chari, Kehoe, and McGrattan (2009)) may have some substance.
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A Appendix

A.1 Numerical procedures

In this Appendix we explain the numerical procedures adopted to obtain estimation results.

Computational matters. All the estimation results reported in this study are obtained using par-

allel computing technology: we use the MATLAB Distributed Computing Server/Parallel Computing

Toolbox on 116 cores. 104 of them are located in the Bank of England and the other 12 in the

Economics Department of Queen Mary, University of London.

The minimisation of the objective function is achieved using the fminunc Matlab function and the

Jacobian matrix (an input to fminunc) is calculated numerically using central finite differences.

Estimation Uncertainty. Parameter estimation uncertainty is calculated using resampling tech-

niques. We resample Ψ̂t and vech(Σ̂t) directly from their asymptotic distributions:

vec
(
Ψ̂t

)
∼ N

(
vec(Ψ̂t), Ω̂vec(Ψ̂t)

)
, vech

(
Σ̂t

)
∼ N

(
vech(Σ̂t), Ω̂vech(Σ̂t)

)
, (A.1)

where Ω̂
vec(Ψ̂t)

=
(
((
∑T

j=2 k
2
tjûjy

′
j−1yj−1û

′
j))⊗((

∑T
j=2 ktjyj−1y

′
j−1)−2)

)
, Ω̂vech(Σ̂t)

= 2D+
(
Σ̂t ⊗ Σ̂t

)
D+′,

D+ =
(
D′D

)−1
D′. Here ktj = K

(
(t−j)/Hψ

)
, ûj are the estimated residuals, and D is the duplication

matrix (see Lutkepohl (2007) for the definition and properties).

For each time period t = 1, 2, ..., T where T = 223 is the sample size,

• we draw 1000 replications
{
Ψ∗,jt , Σ∗,jt , j = 1, · · · , 1000

}
using (A.1);

– for each Ψ∗,jt and Σ∗,jt calculate for 12 periods the responses of the entire observable vector to

a policy shock identified using the Choleski factor of Σ∗,jt ;

– use that impulse response function to estimate the DSGE structural model.

• This process delivers 1000 vectors θ∗,jt of structural parameter at point t.

• From the 1000 structural parameter vectors we construct the pointwise median θ̄
∗
t and the 68%

confidence interval (16%− 84% percentiles, θ∗,16p
t − θ∗,84p

t ). Furthermore, we use the median θ̄
∗
t

to find the parameter vector θ̃
∗
t among 1000 vectors that minimises the Euclidean norm

θ̃
∗
t = arg min

∥∥θ̄∗t − θt∗,j∥∥.

We consider θ̃
∗
t as a better representation of the central tendency of the distribution of θ̂t than

θ̄
∗
t

• We store θ̃
∗
t , θ

∗,16p
t and θ∗,84p

t and we proceed to t+ 1.

We repeat the same process for all time periods t = 1, · · · , T .



A.2 Review of the Smets-Wouters (2007) model

In this appendix we discuss briefly some of the key linearized equilibrium conditions of Smets and

Wouters (2007) model. Readers who are interested in how these are derived from solving the consumer

and firms’ decision problems are recommended to consult SW directly. All the variables are expressed

as log deviations from their steady-state values; Et denotes expectation formed at time t; a ‘−’ above a

variable denotes its steady state value; and all the shocks (ηit) are assumed to be normally distributed

with zero mean and unit standard deviation.

The demand side of the economy consists of consumption (ct), investment (it), capital utilisation

(zt) and government spending
(
εgt = ρgε

g
t−1 + σgη

g
t

)
which is assumed to be exogenous. The market

clearing condition is given by

yt = cyct + iyit + zyzt + εgt ,

where yt denotes the total output and Table (1) provides a full description of the model’s parameters.

The consumption Euler equation is given by

ct =
h/γ

1 + λ/γ
ct−1 +

(
1− h/γ

1 + h/γ

)
Etct+1 +

(σC − 1)
(
W̄ hL̄/C̄

)
σC (1 + h/γ)

(lt − Etlt+1)

− 1− h/γ
σC (1 + h/γ)

(
rt − Etπt+1 + εbt

)
, (A.2)

where lt is the hours worked, rt is the nominal interest rate, πt is the rate of inflation and εbt(
εbt = ρbε

b
t−1 + σbη

b
t

)
is the risk premium/net worth shock. If the degree of habits is zero (h = 0),

equation (A.2) reduces to the standard forward looking consumption Euler equation. The linearised

investment equation is given by

it =
1

1 + βγ1−σC
it−1 +

(
1− 1

1 + βγ1−σC

)
Etit+1 +

1

(1 + βγ1−σC ) γ2ϕ
qt + εit,

where it denotes the investment, qt is the real value of existing capital stock (Tobin’s Q) and εit(
εit = ρiε

i
t−1 + σiη

i
t

)
is the investment specific shock. The sensitivity of investment to real value of the

existing capital stock depends on the parameter ϕ (see, Christiano, Eichenbaum, and Evans, 2005).

The corresponding arbitrage equation for the value of capital is given by

qt = βγ−σC (1− δ)Etqt+1 +
(
1− βγ−σC (1− δ)

)
Etrkt+1 −

(
rt − Etπt+1 + εbt

)
,

where rkt = − (kt − lt) + wt denotes the real rental rate of capital which is negatively related to the

capital-labour ratio and positively to the real wage.

On the supply side of the economy, the aggregate production function is defined as:

yt = φp (αkst + (1− α) lt + εat ) ,

where kst denotes capital services, in turn a linear function of lagged installed capital (kt−1) and the

degree of capital utilisation, kst = kt−1 + zt. εat
(
εat = ρaε

a
t−1 + σaη

a
t

)
is the TFP shock. Capital

utilization, on the other hand, is proportional to the real rental rate of capital, zt = 1−ψ
ψ rkt . The



accumulation process for installed capital is simply described as

kt =
1− δ
γ

kt−1 +
γ − 1 + δ

γ

(
it +

(
1 + βγ1−σC

)
γ2ϕεit

)

Monopolistic competition within the production sector, Calvo-pricing, and indexation to lagged infla-

tion in periods when firms are not setting prices optimally, gives the following New-Keynesian Phillips

curve for inflation:

πt =
ip

1 + βγ1−σC ip
πt−1 +

βγ1−σC

1 + βγ1−σC ip
Etπt+1

− 1

(1 + βγ1−σC ip)

(
1− βγ1−σCξp

)
(1− ξp)

(ξp ((φp − 1) εp + 1))
µpt + εpt ,

where µpt = α (kst − lt)−wt + εat is the marginal cost of production and εpt = ρpε
p
t−1 + σpη

p
t −µpσpη

p
t−1

is the price mark-up price shock which is assumed to be an ARMA(1,1) process. Monopolistic com-

petition in the labour market also gives rise to a similar wage New-Keynesian Phillips curve

wt =
1

1 + βγ1−σC
wt−1 +

βγ1−σC

1 + βγ1−σC
(Etwt+1 + Etπt+1)− 1 + βγ1−σC iw

1 + βγ1−σC
πt

+
iw

1 + βγ1−σC
πt−1 −

1

1 + βγ1−σC

(
1− βγ1−σCξw

)
(1− ξw)

(ξw ((φw − 1) εw + 1))
µwt ,+ε

w
t ,

where µwt = wt −
(
σllt + 1

1−λ (ct − λct−1)
)

is the households’ marginal benefit of supplying an extra

unit of labour service and the wage mark-up shock εwt = ρwε
w
t−1 + σwη

w
t − µwσwηwt−1 is also assumed

to be an ARMA(1,1) process.

Finally, the monetary policy maker is assumed to set the nominal interest rate according to the

following Taylor-type rule

rt = ρrt−1 + (1− ρ) [rππt + ry (yt − ypt )] + r∆y

[
(yt − ypt ) +

(
yt−1 − ypt−1

)]
+ εrt ,

where ypt is the flexible price level of output and εrt = ρrε
r
t−1 + σrη

r
t is the monetary policy shock.10

A.3 Charts

10The flexible price level of output is defined as the level of output that would prevail under flexible prices and wages
in the absence of the two mark-up shocks.



Figure 1: Evolution of the VAR Impulse Responses: I
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Figure 2: Evolution of the VAR Impulse Responses: II
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Figure 3: Impulse responses from a fixed parameter DSGE estimation
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Figure 4: Time-varying DSGE parameters: I
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Figure 5: Time-varying DSGE varameters: II
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Figure 6: Time-varying DSGE parameters: III
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Figure 7: Time-varying DSGE parameters: IV
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A.4 Tables

Table 1: Description of structural parameters and their estimated values

Estimated Parameters

Mnemonics Description Value

ξw Wages Calvo Probability 0.793
ξp Prices Calvo Probability 0.672
ιw Indexation Wages 0.597
ιp Indexation Prices 0.594
ϕ Investment Adjustment Cost 2.290
σc Intertemporal Elasticity of Substitution 1.642
h Habit Persistence 0.697
σL Labour Supply Elasticity 1.651
ψ Capital Adjustment Cost Elasticity 0.100
Φ Fixed Cost 2.971
rπ Taylor Rule Inflation Reaction 1.931
ρ Taylor Rule Inertia 0.821
ry Taylor Rule Output Gap Reaction 0.091
r∆y Taylor Rule Output Gap Change Reaction 0.013
100(β−1 − 1) Time Discount Function 0.145
log(γ∗) Log Productivity Growth 0.355
α Production Capital Share 0.152
100σr Policy Shock STD 0.736
100σa Productivity Shock STD 0.036
100σb Preference Shock STD 0.419
100σg Government Spending Shock STD 0.897
100σi Investment Specific Shock STD 13.921
100σp Price Markup Shock STD 0.395
100σw Wage Markup Shock STD 0.345
ρr Policy Shock Persistence 0.163
ρa Productivity Shock Persistence 0.862
ρb Preference Shock Persistence 0.838
ρg Government Spending Shock Persistence 0.878
ρi Investment Specific Shock Persistence 0.650
ρp Price Markup Shock Persistence 0.877
ρw Wage Markup Shock Persistence 0.876
θp Price Markup Shock MA 0.468
θw Wage Markup Shock MA 0.880
ρag Government Spending and Productivity Shocks Correlation 0.053

Calibrated Parameters

εw Kimball Aggregator Labour Market Curvature 10.000
εp Kimball Aggregator Goods Market Curvature 10.000
τ Capital Depreciation 0.025
λw Steady State Labour Markup 1.500
G
Y Steady State Government to GDP Ratio 0.180

* Note: The values of the calibrated parameters are those used by Smets and
Wouters (2007)
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